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Factorization  

R: “clean-sky” shortwave cloud forcing 
ΔR: aerosol indirect forcing, aka ERFaci  
τ:  cloud optical depth         Nd: cloud droplet number 
CCN: CCN at 1 km (0.1% supersaturation)  
E: anthropogenic emission       
L: liquid water path         re: droplet effective radius  
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Factorization  

dR: ERFaci 
R: “clean-sky” shortwave cloud forcing 
tau:  cloud optical depth 
Nd: cloud droplet number 
CCN: CCN concentration 

ΔR = R d lnR
d lnτ

d lnτ
d lnNd

d lnNd

d lnCCN
Δ lnCCN

Global

Land

Ocean

Values normalized by multi-model mean 
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Ocean

Decomposition: dlntau/dlnNd  

tau:  cloud optical depth 
Nd: cloud droplet number 
CCN: CCN concentration 
LWP: liquid water path 

d lnτ
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Values NOT normalized by multi-model mean 



Constraints from present day variability 
might not apply to pre-industrial to present 
day changes 

5  

radiative forcing as the forcing obtained by holding all values
constant except the estimated change in Nc (13, 14), thereby
requiring that the feedbacks associated with droplet coalescence
and precipitation not be included. This is the definition used
here, but we include the effect of some of the feedbacks in
Table 1.

Fig. 4A shows the TOA shortwave forcing using the true mod-
eled PI Nc. The forcing based on the estimated PI Nc from R
(AOD ) is shown in Fig. 4B, whereas that based on R(AI) is
shown in Fig. 4C. The global average indirect forcing using
the true PD and PI values for Nc is −1.69 Wm−2 but that using
the satellite method based on R(AOD) is only −0.27 Wm−2. The
forcing in every region is smaller using the satellite-based regres-
sion (see Fig. S1). If R(AI) is used rather than R(AOD), the for-
cing is significantly larger, −1.09 Wm−2, but is still smaller than
the value based on the true model estimate of preindustrial Nc,
even if we restrict the true model estimate to the satellite region
that spans only the latitudes from 60 °N to 60 °S. As noted above
from the discussion of slopes, there are some regions where the
estimated forcing is actually more negative using the satellite
method based on AI, most notably in the NPO, TPO, and SPO
regions. However, the satellite method underestimates the nega-
tive forcing over all continental regions (see Fig. S1).

The values for the PD slopes based on R(AOD) shown in
ref. 12 as well as those from satellite observations include the
effects of changes to Nc that result from feedbacks between aero-
sols and Nc. In the above, we emphasized the use of an off-line
model to calculateNc in order to report results that are consistent
with the IPCC definition of the first aerosol indirect forcing.
Table 1 summarizes these off-line model results for forcing as well

as results using the inline values for Nc, AOD, and AI from the
coupled Community Atmospheric Model/Integrated Massively
Parallel Atmospheric Chemical Transport (CAM/IMPACT)
model, but holding cloud liquid water path and cloud fraction
constant at PD values.

The forcing based on inline-calculated values for Nc from PD
and PI simulations (−1.29 W∕m2) is slightly smaller (in absolute
value) than that deduced from the method based on the IPCC
definition of forcing (−1.69 W∕m2). This might be expected
because the effect of coagulation and coalescence will be to
decrease values of Nc more at larger values of Nc thereby making
the difference inNc between PD and PI conditions smaller, which
then causes smaller forcing.

The forcing based on R(AOD ) and that based on R(AI) using
the inline calculations is larger than that of the off-line calcula-
tions using R(AOD ) or R(AI). Values for the slope based on R
(AI) or R(AOD) from the inline model results are, in general,
larger than those based on R(AI) or R(AOD) from the off-line
model, and this causes the estimated PI droplet concentrations to
be smaller and the forcings larger (in absolute value) than those
from the off-line method. The increased slope in the inline model
is caused by the decreased loss of cloud droplets when aerosols
increase within a region. More aerosols lead to less droplet sedi-
mentation and precipitation, which then reduces the sink of cloud
droplets and leads to relatively higher droplet number concentra-
tions for a given aerosol concentration, which in turn increases
the slope based on R(AI) or R(AOD). The PD slopes from
satellite data include the effects of these feedbacks between
aerosols and clouds, so this example also shows that the use of
satellite slopes should not be expected to fit the IPCC definition
of forcing.

We also note that the increase in slope using inline values
causes the forcing based on estimating PI Nc from R(AI) in
the inline model to be larger than the forcing using the true
PI values, whereas the forcing based on the off-line model is smal-
ler. This larger forcing is mainly caused by differences in slopes
over ocean regions, because land areas still have smaller forcing
than that based on the true PI values (see Fig. S2). The larger
forcing is again caused by the feedbacks between aerosols and
cloud drop number concentrations, which increase the slopes.
This feedback is larger over ocean areas because the role of in-
soluble aerosols (which do not form drops as easily as soluble
aerosols, and thus do not enhance the effects of feedbacks as
much as soluble aerosols) is smaller in general over ocean areas
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Fig. 3. Scatter plot of lnðNcÞ versus lnðAODÞ and versus lnðAIÞ for North America in JJA and DJF and for Asia in MAM. The red line shows the best-fit linear
regression from PD values, whereas the blue line shows the best fit linear regression for the PI values. The black line shows the fit computed using the difference
in the average of the PD and PI values.

Table 1. Global annual average aerosol first indirect forcing (W∕m2)

PD − PI*
PD − PI based on

fit to AOD*
PD − PI based
on fit to AI*

Inline Nc
† −1.29 −0.43 −1.59

Off-line Nc −1.69 −0.27 −1.09

*PD − PI forcing is based on the true modeled PD and PI results for droplet
number concentrations. The PI values based on fits to AOD or AI are from
the regression between the PD lnðNcÞ versus lnðAODÞ or between the PD
lnðNcÞ versus lnðAIÞ.

†Inline model results for PD and PI droplet number concentrations
include changes from the initial concentration due to sedimentation,
coagulation, and precipitation.

13406 ∣ www.pnas.org/cgi/doi/10.1073/pnas.1018526108 Penner et al.

Penner et al., PNAS 
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dlnNd/dlnCCN (PD) vs. dlnNd/dlnCCN (PD-PI) 



Dlntau/dlnNd (PD) vs. dlntau/dlnNd (PD-PI) 



dlnLWP/dlnNd (PD) vs. dlnLWP/dlnNd (PD-PI) 



Spop vs. dlnLWP/dlnCCN (Pd-PI)  
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Spop=-dlnPOP/dlnAI 

Over ocean  
(Wang et al., 2012, GRL)  



Opportunities from Recent 
Regional Changes in Emissions 

1110 S. J. Smith et al.: Anthropogenic sulfur dioxide emissions: 1850–2005
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Fig. 5. Global sulfur dioxide emissions by (a) source and (b) end-use sector. Emissions by source are the primary inventory result from this
work. Emissions were then mapped to sector. Included are emissions from forest and grassland fires from van der Werf et al. (2006), Schultz
et al. (2008), and Mieville et al. (2010) as used in the RCP historical inventory exercise (Lamarque et al., 2010).
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Fig. 6. Global sulfur dioxide emissions by region (North Amer-
ica =USA+Canada; East Asia = Japan, China+, and South Korea).

to low-sulfur coal was a major driver of emissions reduc-
tions until recent years. Flue-gas desulfurization has played
an increasing role in recent years, when the coal sulfur con-
tent actually increased, but emissions continued to decrease
(see Supplement, Fig. S-2).
The impact of these changes can be seen in Fig. 7, which

shows the aggregate emissions factor (emissions over fuel
combusted) by region. Note that the split between coal and
petroleum emissions is approximate in some regions, which
means that there is uncertainty in these emissions factors.
The aggregate emissions factor shown in Fig. 7 includes the
impact of changes in sulfur content, sectoral shifts, and emis-
sions controls.

The change in coal emissions factor varies greatly by re-
gion, with some regions showing little change, while emis-
sions factors in many regions, including the Japan, Europe,
United States, Canada, and South Korea, have decreased sub-
stantially since 1970. As a result, the global average emis-
sions factor for combusted coal has decreased by 2005 to
60% of the 1970 value. Shifts to lower sulfur coal and flue-
gas desulfurization have contributed to lower relative emis-
sions from coal combustion, although emissions data alone
is not sufficient to quantify these effects individually.
The emissions factor for petroleum has decreased in all

world regions. The global average emissions factor for
petroleum products in 2005 is about half of the 1970 value.
From a top-down perspective, this is due to an increase in
the fraction of sulfur removed from crude oil at oil refiner-
ies. From a bottom-up perspective, the decrease is due to
limits on the sulfur content of end-use fuels and a reduction
in the fraction of residual oil consumed. Countries such as
Mexico and South Korea had particularly high percentages
of residual oil in their consumption mix until around 1990,
and a decrease in this fraction since then has contributed to
the decline in the aggregate petroleum emissions factor.

4.2 Comparison with other estimates

The methodology used here, whereby regional inventories
are used to calibrate a bottom-up emissions estimate, was
used in order to produce an estimate that uses what was
judged to be the best data from various regions. Use of
such inventory information automatically takes into account
emissions control efforts, providing the inventory data used
accurately takes these factors into account. Uncertainty

Atmos. Chem. Phys., 11, 1101–1116, 2011 www.atmos-chem-phys.net/11/1101/2011/

Smith et al., ACP (2011) 
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Constraining Forcing with Recent Changes 

! Satellite data not available to constrain factors during this 
period 

Geophysical Research Letters 10.1002/2013GL058715

Figure 1. Solar brightening trend for the years 1990 to 2005 over 52 GEBA observational sites (Figure S11) in the
European region for the historical experiment versus aerosol effective forcing (EF = sstClimAerosol − sstClim) at
(a) surface, (b) top-of-the-atmosphere (TOA) over the continental European region, and (c) global TOA. Please note the
different scales on the y axis. The Meteorological Research Institute (MRI)-coupled (ocean-atmosphere) general circula-
tion model CGCM3 model is not included in the regression analysis in Figure 1c. The different colors are for observations
and different models. The black lines indicate the least squares trend line (average and 1 standard deviation consider-
ing the uncertainties for each model and the observations). The red lines indicate the constrained forcing value line and
light red shade indicates the uncertainty range in the GEBA observed trend.

warming trend for the historical experiment. The scatterplot between solar brightening and the tempera-
ture trend difference from 1990 to 2005 and 1960 to 1980 shows that the solar brightening trend simulated
by CMIP5 models scales with the change in warming trend over the continental European region (Figure 2a).
The temperature trend difference between the two periods is used to single out to a first order the
greenhouse gas and natural forcing influence from aerosol forcing. The models that quantitatively repro-
duce the brightening trend show a stronger warming trend than the observed one (Figure 2a). From the

CHERIAN ET AL. ©2014. American Geophysical Union. All Rights Reserved. 2179

Cherian et al., GRL (2014) 



Conclusions 

! Diversity in estimated effective radiative forcing through 
aerosol effects on clouds is driven by diversity in several 
factors, particularly 
! Sensitivity of droplet number to CCN 
! Sensitivity of liquid water path to droplet number 

! Constraints on anthropogenic aerosol effects are needed 
! Constraining susceptibilities using data from present day 

variability not sufficient to constrain anthropogenic aerosol 
effects 

! New present day metrics are needed to constrain 
anthropogenic aerosol effects 

! Regional trends for selected periods could be helpful 
! Global data availability limits trend analysis to post 2002 
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Satellite vs Surface-Based Remote Sensing 

NCCN, similar to the response of Rcb to NCCN in Figure 2. For all LWP in Figure 5a and for LWP of 300 gm!2 in
Figure 5b, there is a statistically significant difference in POP between low and high NCCN, which has not been
reported elsewhere and provides valuable observational evidence of an aerosol impact on POP.

Using the same reflectivity threshold of 0dBZ, a similar response of POP to aerosol index (AI) was found using
CloudSat and Advanced Microwave Scanning Radiometer—Earth Observing System (AMSR-E) measurements
over oceans during 2007 [L’Ecuyer et al., 2009]. Figure 5b shows that CloudSat-based POP increases with LWPand
decreases with AI and agrees well with climate model simulations at 4 km scale from the multiscale aerosol-
climate model PNNL-MMF (Pacific Northwest National Laboratory Multi-scale Model Framework) [Wang et al.,
2012]. However, a discrepancy exists in the magnitude of POP between AMF and CloudSat, which is not
negligible and warrants further discussions.

First, to investigate a potential calibration issue between the CloudSat and AMF ground-based 94GHz radars,
we compared reflectivity versus height for warm clouds at least 100m thick with tops below 3 km. From the
CloudSat 2B-GEOPROF standard product [Haynes and Stephens, 2007], the cloud mask was first used to select
warm clouds satisfying the above criteria from overpasses within a 4°× 4° grid box around the AMF Azores
site, and where the criteria were met, reflectivity profiles were selected. Then, AMF reflectivity profiles using
the same criteria were sampled during a 4 h time window centered on the CloudSat overpass time; this way
of comparing ground- and satellite-based radar reflectivity closely follows the intercomparison method of Liu
et al. [2010]. Figure 6 shows the cumulative probability of reflectivity with height for both data sets. We find
that the cumulative probabilities match well between the two, particularly for heights between 1200m and
1800m, suggesting there is no serious calibration issue.

For altitudes above 1800m, CloudSat reflectivity tends to be higher than AMF at a given probability
percentile. This is believed to be due to the long 480m pulse of the CloudSat radar, which leads to range
sidelobes extending above the clouds (see Marchand et al. [2008] and Ceccaldi et al. [2013] for further
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Figure 5. Probability of precipitation (%; POP) as a function of liquid water path (LWP) for various number concentrations of
CCN, using a radar reflectivity threshold to determine a rain event of (a)!15 dBZ, and (b) 0 dBZ, including POP bounded by
low and high aerosol index in stable atmospheric conditions from CloudSat observations [L’Ecuyer et al., 2009] and from the
PNNL-MMF multiscale climate model [Wang et al., 2012]. (c) POP only for Azores region for !15 dBZ (red) and 0 dBZ (blue)
reflectivity thresholds using CloudSat (thick lines) and AMF data (thin lines); the dashed thin blue line represents AMF LWP
and POP averaged over longer time periods.
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