Demonstrating Feasibility of Tactical Turbulence Alerts

Tenny A. Lindholm1, Eldridge Frazier2, Bob Barron1, Gary Blackburn1, Cathy Kessinger1, Mary Delemarre2 and John K. Williams1

With contributions from Jason Craig1, Tammy Farrar2, Teddie Keller1, Greg Meymaris1, Julia Pearson1, Robert Sharman1 and Gerry Wiener1

1 National Center for Atmospheric Research \quad 2 Federal Aviation Administration

AMS 17TH ARAM Conference, paper 13.3

5-8 January 2015
Tactical turbulence project objectives

- Tactical turbulence: A rapidly-updated, high-resolution view of the current turbulent state of the atmosphere
- FAA Weather Technology in the Cockpit (WTIC) Program
- Overall research project goals
 - Identify a recommended method for presenting tactical turbulence alerts in the cockpit
 - Demonstrate the feasibility of implementing the tactical turbulence alert (with the necessary latency) via an Aircraft Access to SWIM (AAtS) connection
 - Include tactical turbulence alerting function in the Minimum Weather Service recommendations
- Three Human-Over-The-Loop (HOTL) demonstrations at the NextGen Integration and Evaluation Capability (NIEC)

This research is in response to requirements and funding by the Federal Aviation Administration (FAA). The views expressed are those of the authors and do not necessarily represent the official policy or position of the FAA.
Motivation for tactical turbulence alerts

• Current information available to pilots and dispatchers inadequate to accurately identify tactical turbulence hazards and can be misleading.
 – PIREPs, *in situ* EDR reports identify turbulence after encountered by other aircraft
 – GTG forecasts on ADDS currently do not include convective (CT) or convectively-induced (CIT) turbulence
 – Radar reflectivity is related to hydrometeor size and density, not turbulence intensity
 – Convective SIGMETs are large, long-lived, and non-specific
 – Turbulence SIGMETs don’t include CT/CIT; only after severe PIREP
 – Airborne Doppler radar turbulence detection covers a limited region and is primarily for pilot use, not shared situational awareness

• Given the potentially rapid evolution of turbulence, latency of cockpit alerts must be minimized
NTDA-Graphical Turbulence Guidance Nowcast (NTDA-GTGNow)

• NTDA-GTGNow is a fusion of:
 – Graphical Turbulence Guidance (GTG-3)
 • Numerical weather prediction model
 – Diagnosis of Convectively-Induced Turbulence (DCIT)
 • MRMS 3D mosaic, lightning, satellite
 – NEXRAD Turbulence Detection Detection Algorithm (NTDA)
 – PIREPs, *in situ* EDR measurements

• NTDA-GTGNow provides diagnosis of turbulence intensity
 – Outputs eddy dissipation rate$^{1/3}$ (EDR)
 – Used to generate tactical turbulence alerts for inflight display
 • Updated at 15 min intervals
 – Includes turbulence sources for:
 • Clear air turbulence (CAT)
 • Convective (CT) and Convectively-induced turbulence (CIT)
 • Mountain wave turbulence (MWT)
Human Over The Loop (HOTL) simulations and concepts

• Three stand-alone simulations in the NIEC Research Cockpit Simulator (RCS)
 – **HOTL 1**: End-to-end system component compatibility
 • Real-time alerts computed for all commercial aircraft in CONUS, including the RCS
 • Computational server load for generating TT product and alerts
 • Latency in delivering alerts to the NIEC/RCS
 – **HOTL 2**: Effectiveness of alert information in aiding pilot decision making for cabin management
 • Archived case studies for HOTL 2 and HOTL 3 with selected flights
 – **HOTL 3**: Efficiency/appropriateness of flight decisions with and without the TT alerts and NTDA-GTGNow product displays

• Simulations will occur February-July 2015
Meteorological scenarios for HOTL 2, 3

Scenario selection criteria

- Represent different turbulence sources
 - Clear-air (CAT)
 - Convective (CT)
 - Convectively-induced (CIT)
 - Mountain-wave (MWT)
- Different areas/depths of turbulence regions
- Different times of day, including nighttime convection

NIEC Research Cockpit Simulator
(see ARAM poster 769A for more photos)
Current alert parameters (adjustable)

Width: 60 NM
Length: 100 NM
Middle: 30 NM

Position projection:
~3 minutes

NTDA-GTGNow EDR thresholds:
>0.15 Light
>0.22 Moderate
>0.34 Severe
Preliminary Text Alert Format

• Null example:
 NULL: No Alert for 18:18:00Z AIR007

• Light example:
 ALERT: 13 Oct 2014 18:48:00Z AIR007 FL400
 heading 188, Light Turbulence ahead

• Moderate example:
 ALERT: 13 Oct 2014 19:03:00Z AIR007 FL400
 heading 247, Moderate Turbulence ahead at
 JAN294021
 JAN – Nearest Navaid
 294 – Angle from Navaid to Moderate turbulence
 021 – Distance in NM
CAT – Reflectivity mosaic

Flight Plan
OKC to DEN

Alert Box

Aircraft position
CAT – Satellite visible channel

Note cloud waves
NTDA-GTGNow gridded field shown with full range of EDR values 0-1
ALERT: 05 Nov 2014 18:33:00Z AIR007 FL300 heading 312, Moderate Turbulence ahead
CAT – NTDA-GTGNNow – position 2

Null

Aircraft position
NULL: Clear at 18:48:00Z AIR007
Summary

- FAA WTIC program testing feasibility of providing tactical turbulence alerts for inflight display
 - NIEC Research Cockpit Simulator, WJHTC
 - Three HOTL simulation studies:
 - HOTL 1: End-to-end realtime system test
 - HOTL 2: Pilot decision making for cabin management
 - HOTL 3: Pilot flight decisions w/wo alerts
 - 2015 February – July time frame

- If successful, next phase for WTIC program will be a future tactical turbulence demonstration with selected airlines

Thank you!