
•  Nationwide “Network of Networks” initiative – observations from 
government and private sectors combined to form single nationwide 
observing network 

•  Important to determine the value of each observing system on forecast 

•  The Ensemble-based Forecast Sensitivity to Observations (EFSO) 
metric of Kalnay et al. (2012) can estimate the impact from 
observations on a forecast, using readily-available products from any 
ensemble filtering system. It is analogous to the adjoint method of 
Langland and Baker (2004). With EFSO, we can evaluate the impact 
of any subset of observations on a forecast without need for separate 
data denial experiments or adjoint. 

•  Utility of EFSO specifically for convective-scale forecasting is 
examined, using a case study from 15 May 2013. 

•  Localization is needed to obtain accurate estimates from EFSO, 
but proper localization complex due to dependencies (spatial, 
cross-variable, time-forecast). 
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Method 

•  WRF-ARW with GSI-based EnKF  
•  Single domain, 3-km horizontal grid resolution, 400 X 400-km domain 
•  Observations assimilated from NDAS prepbufr file format  
•  40-member ensemble initialized using “random-cv” method from a 12-

km NAM analysis 
•  Eventually will be combined ensembles from GEFS and SREF, so 

each ensemble has unique boundary condition 
•  Hourly cycling starting at 1900 UTC, after 1-hr spinup period, ending at 

2200 UTC (final analyses) 
•  Data-denial and EFSO experiments focus on forecasts after 

assimilation period 

1.  Regression Confidence Factor (RCF) – Uses groups of ensembles  

 

 

2.  Ensemble Correlations Raised to a Power (ECO-RAP) localization 
(Bishop and Hodyss 2009)  

3.  Other methods may be considered, such as Empirical Localization of 
Anderson and Lei (2013), or using parameters derived from RCF 
(offset, maximum magnitude, east-west span, north-south span) to 
automatically tune an elliptical GC function (Gasperoni  Wang 2014) 

Ensemble-based Forecast Sensitvity to Observations (Kalnay et al. 2012) 

 

 
 
ρI is localization function, which acts on ensemble covariances between the analysis 
(in obs space) and a forecast of some length. Note that this localization function is 
different from localization used during assimilation (ρA), though they are related and 
shown to be linked together (Gasperoni and Wang 2014). Proper choice of ρI should 
take into account ρA as well as time-forecast and spatial considerations. 
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Research Focus 

Data Denial Experiments – To establish impact of subsets of observations, 
and to use for comparison in EFSO estimations 

Focus in Convective Initiation –  Specifically timing/location (in N. Texas) as 
well as mesoscale environment. 

Compare and contrast adaptive methods for EFSO – How to apply these 
methods for effective use in convective-scale observation impact estimation. 
Key focus on localization capturing “errors of the day”, given high 
nonlinearity of model for convective scales 

Vertical Profiles – How do adaptive methods handle vertical localization, and 
does it lead to more accurate impact estimates. 

Motivation 
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15 May 2013 Case Study 

•  7 tornadoes, including EF4 in Hood County,  
   TX and an EF3 in Johnson County, TX. 
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•  Initiation after 2200 UTC in N. Texas, 
with storms initially discrete, initiated 
from increased differential heating in 
the afternoon,  but later congealed 
into a line 

Adaptive Localization Methods for EFSO 
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between the state variables and observations, there are g samples of the regression 181 
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where Q is the ratio of the sample standard deviation to the absolute value of the sample 185 

mean of the group β’s. The optimal weighting factor αmin is also known as the regression 186 

confidence factor (RCF). A unique αmin can be calculated for each observation-state pair. 187 

The set of RCFs for a given observation and all state variables is called a regression 188 

confidence envelope and can be used directly as a localization function (Anderson 2007).  189 
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the regression between  observations y0  and state background x0
b . So β is the covariance 191 

between y0 and x0
b normalized by the variance of y0. For applying this method to the 192 

ensemble impact metric, a different regression is considered to be between the analysis in 193 
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The use of the RCF method for the impact metric is inherently limited by the linear 195 

regression approximation needed to compute the group β’s according to (5), so there is a 196 

inherent limit to the forecast length at which it can be successfully applied.  197 

 37 

shows an example of the raw ensemble correlations and the resulting localization function 

after the algorithm was applied.  The spurious correlations are nearly eliminated by the 

procedure, though some small areas may still remain. 

 

Figure 3.3 – Absolute value of the raw ensemble correlations (top panel) and the resulting 
CSENCORP localization function (bottom panel) for the grid point location indicated by the 
white dot, valid for the background ensemble of the 150th analysis cycle. Black contours 
are layer two thickness, ∆π2, plotted at intervals of 50 J kg-1 K-1. 
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3. Experiment Design 210 

(a) The assimilation and forecast system 211 

To evaluate and explore methods to improve the ensemble based observation 212 

impact, experiments with a simplified primitive equation model and simulated 213 

observations were done. The dry, global, two-layer primitive equation spectral model of 214 

Zou et al. (1993) was chosen, which has been used in several studies of perfect- and 215 

imperfect-model ensemble-based data assimilation experiments (e.g., Wang et al., 2007, 216 

2009; Holland and Wang, 2013). It is useful due to its low computational demands 217 

allowing for many experiments to be conducted. The model variables include two vertical 218 

layers of vorticity, divergence, and layer thickness coefficients. The layer thicknesses, 'S1 219 
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Figure 5. Contour plots of RCF localization functions for one interface height observation 832 
valid at various forecast lengths, (a-c) for analysis time, t = 0, (d-f) for t  = 1-day forecast, 833 
(g-i) for t  = 2-day forecast,  and (k-l) for t  = 3-day forecast.     The first column shows 834 
RCF envelopes for model interface height, and the second and third columns show 835 
envelopes for cross-variables zonal and meridional layer-2 wind, ug2 and vg2, respectively.  836 
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•  Based off of Anderson (2007) ‘hierarchical 
filter’ or ‘group filter’ 

•  Captures underlying dynamical correlations 
of model in time, space, and among different 
variables. 

•  Shown to be skillful for two-layer model 
EFSO calculations (Gasperoni and Wang 
2014) 

•  How to apply for EFSO at convective scale? 
Online smoothing process, or averaging over 
composites 

Research Focus 

Observation Network 

Image to the right – Numerical domain for experiments and observation locations.  Orange crosses – 
aircraft observations, Magenta dots – GPS precipitable water observations, Green dots – RAOB and 
wind profilers, Blue squares – ASOS/Synoptic METAR surface observations, Black dots – Mesonet 
observations (from various sources such as Oklahoma Mesonet, Citizen Weather Observer Program, 
Weather Bug surface stations, etc.) 

Courtesy of Storm Prediction Center  Courtesy of http://www2.mmm.ucar.edu/
imagearchive/ 

Raw Ensemble Correlations After processing 

Analysis 

1-day Fcst 

2-day Fcst 

3-day Fcst 

Example of RCF capturing underlying model time-
forecast dynamics  


