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1. INTRODUCTION 

Rainfall nowcasting algorithm for 

convective storms is introduced in this work.  The 

algorithm uses high resolution radar data to 

forecasts the evolving distribution of rainfall rate.  

It is assumed that for a short time period, a rain 

cloud behaves as a rigid object, with all parts 

moving in the same direction at a constant speed.  

Thus, the most likely future rainfall areas are 

estimated by tracking rain cell centroid advection 

in consecutive radar images.  To estimate the 

growth or decay of rainfall intensity, a nonlinear 

regression model varying in the time and space 

domain is proposed to predict the most likely 

rainfall rate.  This rainfall nowcasting algorithm 

was validated against five rainfall events which 

occurred over western Puerto Rico.  Results 

show that the nowcasting algorithm is a potential 

tool to couple with a hydrological numerical model 

to forecast inundation areas. 

Inundation and flash floods are occurring 

more frequently not only in tropical areas, but also 

in different climate conditions around the world 

(Burroughs, 2001).  The impacts on human/ 

animal mortality and on the economy are one of 

the most important natural hazards that are 

frequently monitored.  Puerto Rico is heavily 

affected by rainfall due to warm-cloud top 

convective processes that are induced by local 

sea breeze- and/or orographic features and 

during the summer by tropical storms and during 

the winter by cold fronts.  A ceilometer shows that 

some of the local convective storms developed in 

the western part of Puerto Rico are below 3 km; 

i.e., some storms are missed because NEXRAD 

radar is located about 104 km away from the 

studied area and reflectivity is measured at about 

3 km above the surface due to mountains.  The 

uses of a radar network with high resolution and 

covering NEXRAD missing areas are important 

for flood forecasting efforts, and for 

understanding hydro meteorological processes.  

This current work represents the first time that a 

high resolution radar technology is used for 

rainfall forecasting in the western part of Puerto 

Rico. 

Recently, the National Oceanic and 

Atmospheric Administration, and the National 

Weather Service (NOAA/NWS) has pointed out 

that in a near-term forecast period the numerical 

weather prediction models currently have lesser 

precipitation forecast skills than extrapolation of 

current radar rainfall observations (http://www 

.nws.noaa.gov/oh/hrl/hag/empe_mpn/).  There 

are some authors that also support this idea (Van 

Horne, 2003; Wilson 2004; Thorndahl, et al. 

2010).  Extrapolation techniques are usually 

conducted by using statistical methods which 

have been developed during the last four 

decades.  Rodríguez-Iturbe et al. (1984; 1987) 

proposed a stochastic model for forecasting 

rainfall in which storms arrive in a Poisson 
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process at a single site.  Each storm in the 

Poisson process consists of a cluster of random 

number of rain cells, with each cell having 

random duration and intensity.  Cowpertwait et al. 

(2007) suggested a conceptual stochastic model 

in which storm origins occur in the Poisson 

process, with each storm having a random 

lifetime.  Although the point process is 

theoretically attractive for a single site, it becomes 

cumbersome for computing the rainfall rate at 

each pixel of a radar field. 

Dixon and Weiner (1993) developed a 

system for identifying and tracking convective 

storms.  The algorithm essentially performs three 

major tasks: identification of convective storms, 

tracking storms, and predicting some storm 

parameters.  The identification of convective cells 

is based on identify the contiguous rain pixels that 

satisfying reflectivity intensity and volume 

thresholds.  The selected threshold, were 𝑧 ≥

35 𝑑𝐵𝑧 and 𝑉 ≥ 50 𝑘𝑚3, for reflectivity and 

volume, respectively.  The tracking system is 

based on minimizing the distance and the 

difference in volume among all possible paths for 

a given storm.  The optimization problem reduces 

to solving the assigning problem, which is usually 

solved by using the Hungarian method.  The 

forecast method is based on a double exponential 

smoothing model (Abraham and Ledolter, 1983).  

The storm parameters that were forecasted are 

the centroid, reflectivity volume, and the 

parameters of an ellipse, since it was assumed 

that the projected reflectivity approaches to an 

elliptical form.  The major challenge was 

encountered when forecasting the centroids of a 

storm that splits or merges, and when these 

events occurred, the algorithm made an incorrect 

forecast.  To fix this, the algorithm was fed with 

information about when a storm was splitting, 

allowing for new tracking histories to start, and if 

a merge occurred, the history of some storms 

could disappear.  They used a lead time that 

varied from 6 to 30 minutes with increment of 6 

minutes, and found that forecast degradation 

occurred as soon as lead time increases.   

In this study, we present a novel rainfall 

nowcasting model designed to work with high 

spatial and temporal resolution radar rainfall data. 

The selected radar provides coverage over the 

western area of Puerto Rico.  The second section 

presents a description of the radar network and 

data used in this study.  The third section 

describes the proposed algorithm to identify the 

rainfall cells and to estimate the cloud motion 

vector, which then is used to determine the most 

likely rain areas.  A nonlinear regression model is 

also introduced in this section to represent the 

spatial and temporal rainfall variability.  The fourth 

section shows validation results and the last 

section presents some conclusions and 

recommendations.  

2. DATA 

Puerto Rico is located in the northeastern 

Caribbean Sea and is one of the Greater Antilles 

islands.  As mentioned before, precipitation is 

primarily affected by troughs imbedded in 

easterly waves during hurricane season (June-

November), cold fronts during winter months 

(December-February), and local convective 

storms generated by sea breeze- and/or 

orographic features mostly occurred during the 

afternoon.  Weather events are monitored using 

NEXRAD radar, a WSR-88D unit located in 

Cayey, Puerto Rico (18.12°N, 66.08°W, and 

886.63 m elevation).  The operating frequency is 

2.7 GHz or 10 cm wavelength is free space (S-

band).  The maximum radial distance (horizontal 

range) is 462 km, and this radar scans the entire 

island every 6 minutes.  In 2012, the first node of 

a 3-radar network (TropiNet) was setup in 

western Puerto Rico to complement the NEXRAD 

radar operation system and specifically to 

observe weather phenomena that occurs at the  

lowest 2 km of the troposphere.  TropiNet will 

address the limitations of identifying boundary 

layer phenomena in this tropical environment, 

such as beam blockage and the Earth’s 

curvature.  TropiNet has three X-band dual-

polarized Doppler weather radars with range 

resolution of 0.06 km and 1 min temporal scan 

resolution (Galvez, et al., 2009; 2013).  Radars 

were setup at three locations in west Puerto Rico, 

including Isabela, Lajas, and Cabo Rojo, all with 

a 40 km radial coverage.  
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Data used in this extended abstract were 

collected from the TropiNet unit located in Cabo 

Rojo, Puerto Rico (18.16°N, 67.17°W, and at 65 

m of elevation).  The working frequency is 9.41 

GHz ± 30 MHz (3.19 cm wavelength in free 

space).  Data were collected at 3 degrees 

elevation over the horizontal plane.  Although 

radar scan is obtained every minute, the 

instantaneous reflectivities observed every 10 

minutes were the inputs to the rainfall nowcasting 

algorithm.  Data used for developing and 

validating the rainfall nowcasting algorithm 

include five convective storms that occurred in 

western Puerto Rico between March and October 

2012 and during February 2014.  The duration of 

these rainfall events varies from 5 to 7 hours with 

an average of 6 hours.  The total number of 

raining hours during these five storms was 30.  

Table 1 describes the studied storms. 

 

Table 1.  Characteristics of studied storms. 
 

 

3. METHODOLOGY 

 

A warm-cloud rainfall event is the result 

of a complex thermodynamic process that starts 

with the nucleation of cloud drops, continues with 

drop growth, and concludes with water drop 

precipitation.  This process may last a few 

minutes or a few hours depending of the 

atmospheric conditions (Houze 1993).  Thus, the 

introduced algorithm uses a sequence of radar 

rainfall data to estimate the rainfall field by first 

predicting the most likely rainfall areas and then 

predicting the expected rainfall rate in each rain 

pixel.  An empirical model is built to represent the 

rainfall process; thus, it is important to identify the 

variables that are related to the precipitation 

process. The suggested regression model is 

developed under the following assumptions:  

 

 It is expected that in a short time period 

(~10 min) a rain cloud behaves 

approximately as a rigid object and the 

cloud rain pixels moves in a constant 

speed and direction.  Thus, the most 

likely future rainfall areas can be 

estimated by using the advection of 

centroids of rain cells in consecutive 

images.   

 The current radar reflectivity is a function 

of the previous reflectivity images 

observed in surrounding areas centered 

on the location of a predicted pixel, and 

also is a function of the ratio of reflectivity 

of a pixel to reflectivity of the cell 

convective core.  

 

The postulated rainfall nowcasting algorithm 

involves two major tasks:  1) predicting the future 

location of the rain pixels, and 2) predicting 

rainfall rate at each pixel. 

 

3.1 Estimation of future rainfall areas  
 

Estimation of the most likely rain fields 
requires estimation of the cloud motion vector, 
which was introduced in a previous publication 
(Ramirez-Beltran, et al., 2015).  Here a brief 
description is presented.  A threshold is used to 
identify pixel having rainfall; for instance, all the 
pixels that exhibit reflectivity larger than 20 dBz 
are selected in a given radar image.  The 
identification of contiguous rain pixels is 
determined by searching through the rows and 
columns of the last two radar images for values 
that satisfy the reflectivity threshold and also 
having either three contiguous rows or columns 
with no rain.  The contiguous rain pixels that 
satisfy the reflectivity threshold will be called rain 
cells.   
 

Let assume that the last two radar 
images exhibit a single rain cell observed at two 
different instant in time; for a more general case 
a combinatory linear optimization problem is 
solved (Dixon and Weiner 1993).  Thus, two 
consecutive centroids of a rainfall cell were 

Date Duration 
(UTC) 

Storm 
Type 

Storm Impacts 

March 
28, 2012 

7 hr. 
16:27-
23:58 

 

Stationary 
trough 

Impacts rivers, water on 
the road, and significant 

rainfall accumulation 

March 
29, 2012 

6 hr. 
00:36-
06:53 

Stationary 
trough 

Impacts rivers, water on 
the road, significant 
rainfall accumulation 

April 30, 
2012 

5 hr. 
17:55-
22:21 

Convective 
storm 

Numerous showers over 
western Puerto Rico at 

the afternoon 

October 
10, 2012 

5 hr. 
16:10-
21:43 

 
Convective 

storm 
Some urban flooding 

February 
12, 2014 

7 hr. 
16:00-
23:29 
 

Heavy 
convective 

storm 

Reduced visibilities and 
ponding of water on 

roadways and low lying 
areas 
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computed to estimate the displacement of the 
cloud cell.  Let 𝐶𝑡−1(𝑥𝑡−1, 𝑦𝑡−1) and 𝐶𝑡(𝑥𝑡 , 𝑦𝑡)  be 

the centroids of a rain cell at time 𝑡 − 1 and 𝑡, 
respectively.  The meridional and zonal 
displacement between two consecutives 
centroids is estimated as follows: 
 

∆𝑥 = 𝑥𝑡 − 𝑥𝑡−1      and    ∆𝑦 = 𝑦𝑡 − 𝑦𝑡−1       (1) 
 

Thus, using elementary trigonometry functions 
the modulus and direction of the motion vector is 
estimated.  Finally, the motion vector is used to 
predict the location of the rain pixels.  Let 𝑃𝑡(𝑖, 𝑗) 
and 𝑃𝑡+1(𝑖, 𝑗) be matrices indicating the locations 

of all rain pixels of the P rain cell at time 𝑡 and 𝑡 +
1, respectively.  Thus, each pixel of the P cell is 
added to the corresponding centroid 
displacement to estimate the future locations of 
the rain pixels, and expressed as follows:   
 

𝑃𝑡+1(𝑘, 𝑙) = 𝑃𝑡(𝑖 + ∆𝑥, 𝑗 + ∆𝑦)          (2) 
 

Figure 1 shows the motion vector and the most 

likely rainy areas.  Prediction was computed with 

30 minutes lead time.  The top panel shows the 

observed rain areas and the bottom panel shows 

the forecasts rainfall area. 

 

 
 

 
 

Figure 1.  Predicting rainfall area for a storm that 

occurred on Puerto Rico March 28, 2012 1840 

UTC; upper panel is the observed values and 

the bottom panel is the forecast. 

 

3.2 Predicting rainfall rate 

The rainfall process exhibits significant 

changes in time and space, and it can be 

characterized as a non-stationary stochastic 

process.  To face the non-stationary 

characteristic of the process, parameters are 

estimated at each time and spatial domain.  Thus, 

the dynamic changes on the mean are inherent in 

the time and space domains of the model.  The 

stochastic characteristics of the process are 

represented by a nonlinear time and spatial lag 

model, which is an approximation to a stochastic 

transfer function model (Ramirez-Beltran et al. 

2008; Box and Jenkins, 1994).  Estimation of rain 

rate at a given space and time requires 

consideration of cloud status at the current time 

and also at consecutive previous points in time as 

well as the influence of the motion vector; i.e., a 

model that depends only on current cloud 

conditions is an incomplete representation of the 

rainfall process because the rain rate at the 

current time is the result of the evolution of 

microphysical processes that started several 

minutes earlier while the wind vector determined 

the possible place where drops may arrive to the 

surface.  Therefore, a reasonable model to 

represent the rain rate would be a nonlinear 
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regression model.  The studied area includes 

740×940 pixels of 0.06 km grid size, and was 

divided in squares of 𝑎 × 𝑎 pixels, which will be 

called a window.  Several window sizes were 

explored for 𝑎 = {7, 9, 11, … ,25} and it was found 

that the larger the window size the larger the 

number of degree of freedom (𝑑𝑓); however, 

resolution was degraded with increased window 

size.  To derive a model for a high resolution with 

robust and consistent estimators, it was 

necessary to have more than 50 𝑑𝑓, where 𝑑𝑓 in 

a regression model is computed as follows:  𝑑𝑓 =

𝑎 × 𝑎 − 𝑏, which 𝑎 × 𝑎 is the total observations in 

a window and 𝑏 is the number of parameters 

included in the model, in this case 𝑏 = 4.  

Experimentally, it was found that the optimum 

window size was 𝑎 = 9 since there is enough 𝑑𝑓 

to derive a regression model and acceptable 

resolution.  Thus, the studied area includes at 

most 8,528 windows (82×104).  When there are 

not enough data at time 𝑡 − 1 and/or at 𝑡 − 2, the 

Kriging interpolation method was used to 

estimate the rain pixels to derive the 

corresponding predictors (Wackernagel 2003).  A 

stochastic nonlinear model that control the 

expected domain was inspired on a previous 

work (Ramirez-Beltran et al. 2008).  An empirical 

model in time and space domain is proposed to 

predict rainfall variability and can be expressed 

as follows: 

 

ℎ𝑡,𝑘(𝑖, 𝑗) = 𝛼𝑡,𝑘 + (𝛽𝑡,𝑘 − 𝛼𝑡,𝑘)𝜙𝑡,𝑘{1 −

𝑒−[𝛿1,𝑡,𝑘ℎ̅𝑡−1,𝑘(𝑖,𝑗)+𝛿2,𝑡,𝑘ℎ̅𝑡−2,𝑘(𝑖,𝑗)+𝛿3,𝑡,𝑘𝑚𝑡−1,𝑘(𝑖,𝑗)]} + 𝜀𝑡,𝑘(𝑖, 𝑗)   

           (3) 

where 

𝛿𝑖,𝑡,𝑘 ≥ 0,   𝑖 = 1,2,3    and          0 <  𝜙𝑡,𝑘 ≤ 1.1   (4) 

ℎ̅𝑡−1,𝑘(𝑖, 𝑗) =
1

𝜂
∑ ∑ ℎ𝑡−1,𝑘(𝑖 + 𝑝, 𝑗 + 𝑞)    𝑞∈𝐴𝑝∈𝐴   (5) 

𝑚𝑡−1,𝑘(𝑖, 𝑗) =
∑ ∑ ℎ𝑡−1,𝑘(𝑖+𝑝,𝑗+𝑞)𝑞∈𝐴𝑝∈𝐴

∑ ∑ ℎ𝑡−1(𝑖′+𝑝,𝑗′+𝑞)𝑞∈𝐴𝑝∈𝐴

         (6) 

 

𝐴 = { 0, ±1, … , ±s, and  s < 𝑎}              (7) 
 

where ℎ𝑡,𝑘(𝑖, 𝑗) is reflectivity observed at time 𝑡, in 

the window 𝑘, and in a pixel located at (𝑖, 𝑗); 

 ℎ̅𝑡−1,𝑘(𝑖, 𝑗) is the average reflectivity variable 

observed at time 𝑡 − 1 and at location (𝑖, 𝑗) used 

to explain reflectivity at time 𝑡, in window 𝑘; and 𝜂 

is the number of elements involved in the 

summation.  The spatial lags 𝑝 and 𝑞 will take the 

values of 0, ±1, … , ±s and 𝑠 < 𝑎.  Several values 

of 𝑠 were explored and the one that exhibited the 

largest correlation between the surrounding 

pixels in time 𝑡 − 2 and 𝑡 − 1 with the center pixel 

on time 𝑡 was selected.  In this particular case the 

best results were found when 𝑠 = 1 (Figure 2𝑎).  

𝛽𝑡,𝑘 and 𝛼𝑡,𝑘 are the maximum and the minimum 

observed reflectivities at time 𝑡 − 2 and 𝑡 − 1 in 

the window 𝑘; 𝑚𝑡−1,𝑘(𝑖, 𝑗) is the ratio of observed 

reflectivity at a pixel to the maximum reflectivity of 

the rain cell at time 𝑡 − 1 and at window 𝑘 (Figure 

2𝑏); where (𝑖′, 𝑗′) is the location of the maximum 

reflectivity in a cell and (𝑖, 𝑗) is the location of the 

predicted pixel at time 𝑡 − 1 of window 𝑘; 

𝜙, and δ′s are the regression parameters at the 

window 𝑘 and are restricted to be positive or 

equal to zero.  In addition the 𝜙𝑡,𝑘 parameter, 

which is a bias correction factor is restricted to be 

less than or equal to 1.1; this threshold value 

were found by inspection. The random variable, 

εt,k(𝑖, 𝑗), is a sequence of an unobserved random 

variables with mean zero and constant variance 

associated to the pixel (𝑖, 𝑗). 

 

Reflectivity at a single pixel at the current time 𝑡 

is related to features from surrounding pixels 

located in the previous two radar images.  Figure 

2𝑎) shows the schematic representation of 

predictors and the predicted pixel.  Figure 2𝑏) 

shows a graphical representation of convective 

core and the predicted pixel. 

 

 

Figure 2𝑎). Schematic representation of 

predictors and predicted pixels, for 𝑠 = 1. 
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Figure 2𝑏).  A schematic representation of the 

convective core and a predicted pixel. 

 

 The proposed nowcasting algorithm 

includes a nonlinear regression model 

(Montgomery et. al., 2012); i.e., a well-planned 

approach is used to properly solve the nonlinear 

constrained problem.  The introduced approach 

includes two steps: identifying the initial point, 

and using a constrained nonlinear optimization 

technique to estimate the final parameter set for 

each window (Ramirez-Beltran et al. 2008). 

 

 
 

 
Figure 4.  Top panel shows the observed rainfall 

and the bottom pane shows the forecast for a 

storm that occurred on Puerto Rico on March 

28, 2012, 1840 UTC. 

 

4. MODEL VALIDATION 

Model validation consists of comparing 
the predicted values from the model with 
observations over the same time and space, and 
is presented for the five storms described in Table 
1.  The accuracy of rainfall predictions of each 
pixel can be measured by decomposing the 
rainfall process into sequences of discrete and 
continuous random variables, i.e., the presence 
or absence of rainfall events and rainfall intensity.  
The occurrence of rainfall events in a given area 
at a particular time follows a Bernoulli process 
and consequently, the prediction accuracy of 
rainfall events can be measured by analyzing the 
bivariate probability distribution of rain/no-rain 
events, which the bivariate distribution is usually 
estimated and presented as a contingency table 
(Wilks, 1995).  
 

In this work, the rainfall estimated from 
radar reflectivity was considered as the observed 
rain/no rain stages and the estimated stages 
were the forecast values from our algorithm for 
lead times of 10, 20, and 30 minutes. The 
contingency tables associated with the five 
studied storms were computed (not shown).  
When the true stage coincides with the predicted 
stage, the event is declared a hit score; 
otherwise, it is considered a failure score.  The 
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percentage of hits in a given contingency table is 
called the hit rate (HR).  The probability of 
detection (POD) and false alarm rate (FAR) 
scores include dichotomous yes/no forecast 
situation and a two-way table for each lead time 
was developed.  A popular index (Wilks, 1995) 
that measure forecast accuracy is known as the 
Heidke Skill Scores (HSS).  Essentially, HSS 
measures the fractional improvement of the 
forecast over the standard forecast.  The range of 
the HSS is −∞ to 1. Negative values indicate the 
worse forecast, 0 means no skill, and a perfect 
forecast obtains a HSS of 1.  The Performance 
Index (PI) is introduced in this work to measure 
the overall dichotomous (rain/no rain) forecast 
accuracy of the model, and is computed as a 
function of HR, FAR and POD.  The PI varies from 
0 to 1, and a value of 1 corresponds to the best 
algorithm performance; whereas, 0 corresponds 
to the worse case.  The PI is defined as follows: 
 

PI = 1 −  
𝐹𝐴𝑅−𝑃𝑂𝐷−𝐻𝑅+2

3
            (8) 

 
Table 2 shows model performance 

scores for HR, POD, FAR, Discrete Bias (DB), 
HSS and PI.  The studied storms provide an 
average HR of 0.89, 0.86, and 0.85 for lead times 
of 10, 20 and 30 minutes, respectively.  The HR 
scores indicate that longer lead times reduced the 
HR.  The POD of storm varies from 0.64, 0.53, 
0.44 and the FAR from 0.27, 0.37, and 0.44 for 
lead times of 10, 20 and 30 minutes respectively.  
Figure 4 (top panel) shows POD and FAR, which 
should be analyzed simultaneously.  It is 
expected that the POD approaches 1, while the 
FAR approaches 0 in the ideal situation.  The 
model exhibits an underestimation since the 
average DB is 0.88, 0.83, and 0.79 for lead times 
of 10, 20, and 30 minutes, respectively.  It can be 
noted that forecast skill degraded since the HSS 
is 0.61, 0.49, and 0.40 for lead times 10, 20, 30 
min respectively.  Figure 4 (bottom panel) shows 
the PI of 0.75, 0.67, and 0.61 for 10, 20, and 30 
minutes lead times. 
 

Table 2.  Model accuracy scores 
 

Forecast 
10 

minutes 
20 

minutes 
30 minutes 

HR 0.89 0.86 0.85 

POD 0.64 0.53 0.44 

FAR 0.27 0.37 0.44 

DB 0.88 0.83 0.79 

PI 0.75 0.67 0.61 

HSS 0.61 0.49 0.40 

 
 

 
 

  
 
Figure 4.  The top panel shows the probability of 
detection and the false alarm rate for the 
corresponding lead times.  The bottom panel 
shows PI for different lead times.  
 

 
The continuous validation strategy 

consists of comparing each pixel of the predicted 
rainfall intensity made at a given time and for a 
specific lead time with the corresponding 
observed rainfall intensity.  Thus, the continuous 
accuracy scores used here were the root mean 
square error (RMSE) and the bias ratio (BR).  The 
calculation of these scores are given as follows:   
 

𝑅𝑀𝑆𝐸𝑡+𝑙 = √
∑ ∑ [𝑦𝑡+𝑙(𝑖, 𝑗) − 𝑦̂𝑡+𝑙(𝑖, 𝑗)]2𝑚

𝑗=1
𝑛
𝑖=1

𝑛𝑚
 , 

                    𝑙 = 10, 20, 30                  (9) 
 

0

0.2

0.4

0.6

0.8

10 minutes 20 minutes 30 minutes

POD and FAR

POD FAR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10 minutes 20 minutes 30 minutes

Performance Index

mailto:Nazario.ramirez@upr.edu


 
Corresponding author Nazario D. Ramirez-Beltran, Industrial  
Engineering, University of Puerto Rico, Mayaguez, P.R. 00680,  

Nazario.ramirez@upr.edu 

𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅
𝑙 =

∑ 𝑅𝑀𝑆𝐸𝑡+𝑙
𝑁
𝑡=1

𝑁
,                (10) 

 

𝐵𝑅𝑡+𝑙 =
∑ ∑ 𝑦̂𝑡+𝑙(𝑖,𝑗)𝑚

𝑗=1
𝑛
𝑖=1

∑ ∑ 𝑦𝑡+𝑙(𝑖,𝑗)𝑚
𝑗=1

𝑛
𝑖=1

,              (11) 

 

𝐵𝑅̅̅ ̅̅
𝑙 =

∑ 𝐵𝑅𝑡+𝑙
𝑁
𝑡=1

𝑁
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where 𝑦̂𝑡+𝑙(𝑖, 𝑗) is the predicted rainfall intensity 
made at time t with l lead time units for a pixel 

located at (𝑖, 𝑗), and 𝑦𝑡+𝑙(𝑖, 𝑗) is the corresponding 
observed rainfall intensity; N is the total number 
of units of time that rainfall was observed, n is the 
total number of rows and m is total number of 
columns of rainfall area.  The RMSE and the BR 
for the five (5) studied events are given in Table 
3, which also shows the corresponding average 
values.  The average RMSE are 0.03, 0.08, and 
0.16 mm and the average BR are 0.97, 0.97, and 
0.94 for lead times 10, 20, and 30 minutes, 
respectively.  The RMSE shows evidence that the 
prediction errors are degraded as soon as the 
lead time becomes larger.  The RMSE is 
increasing due to the fact that larger errors are 
occurring as soon as the lead time is increasing.  
 

Table 3.  Average root mean square error and 
bias ratio 

 
 

Figure 5 shows the accumulation of 
rainfall for every pixel and during 7 hours of 
rainfall event that occurred in Puerto Rico in 
March 28, 2012.  Upper panel shows TropiNet 
observed rainfall (mm) and bottom panel show 
the predicted rainfall (mm).  The upper panel of 
Figure 6 shows the average rainfall for all rain 
pixels for each time interval (10 minutes) and 
during the entire rainfall event (March 28, 2012).  
The blue line represents the observed (TropiNet) 
data and the green line represents the predicted 
precipitation at 10 minutes lead time. The bottom 
panel of Figure 6 shows the rainfall accumulated 

for all rain pixels during 7 hours of a rainfall event 
(March 28, 2012).  
 

 

 

 
Figure 5.  Rainfall accumulated during 7 hours for 
the event that occurred in Puerto Rico on March 
28, 2012.  Upper panel show the accumulated 
predicted rainfall (mm) for a 10 minutes lead time 
and bottom panel show TropiNet observed 
accumulated rainfall (mm). 
 
 

 10 minutes 20 minutes 30 minutes 

Rainfall 
Event 

Average 
RMSE 
(mm) 

Average 
BR 

Average 
RMSE 
(mm) 

Average 
BR 

Average 
RMSE 
(mm) 

Average 
BR 

1 
0.04 0.95 0.14 0.91 0.21 0.83 

2 
0.01 0.97 0.03 0.98 0.03 0.97 

3 
0.01 1.03 0.03 1.12 0.04 1.19 

4 
0.06 0.95 0.15 0.92 0.36 0.86 

5 
0.03 0.97 0.06 0.92 0.15 0.84 

Average 
0.03 0.97 0.08 0.97 0.16 0.94 
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Figure 6.  Top panel shows the average rainfall 
for all rain pixels during each time interval (10 
minutes).  The bottom panel shows the 
accumulated precipitation for all rain pixels during 
7 hours of a rainfall event that occurred on March 
28, 2012. The blue line represents the observed 
(TropiNet) data and the green line represents the 
forecasts at 10 minutes lead time. 
 

5. CONCLUSION AND RECOMMENDATIOS 

 

Estimation of rain rate at a given space 

and time requires consideration of the clouds 

status at the current time and also at consecutive 

previous points in time as well as the influence of 

the motion vector; i.e., a statistical model that 

depends only on current cloud conditions may be 

an incomplete representation of the rainfall 

process because the rain rate at the current time 

is the result of the evolution of microphysical 

processes that started several minutes earlier 

while the wind vector determines the possible 

places where rain drops may arrive to the 

surface.  Therefore, a reasonable model to 

represent the rain rate was introduced.  The 

major contribution of this research is the 

postulated model represents the spatial and 

temporal variation of rainfall rate.  Different 

parameter estimation is developing at each 

spatial and temporal domain, and the stochastic 

behavior of rainfall intensity was represented by 

an exponential time and spatial lag model, which 

is an approximation of a stochastic transfer 

function. 

The rainfall nowcasting algorithm uses 

consecutive images of weather radar to forecast 

rainfall rate.  The algorithm searches for 

contiguous rain pixels and identifies rain cells in 

the last two radar images to estimate the cloud 

motion vector.  The cloud motion vector is then 

used to estimate the most likely future locations 

of the rain pixels, and finally, nonlinear regression 

models are postulated to forecast the intensity of 

rainfall rate at each rain pixel.  The proposed 

rainfall nowcasting algorithm was validate with 

five (5) storms with a total of 30 hours of 

precipitation and results show that the 

nowcasting algorithm is a potential tool to couple 

with a hydrological numerical model to predict the 

most likely inundations areas. 

Puerto Rico is heavily affected by rainfall 

due to warm-top convective processes that are 

induced by local sea breeze- and/or orographic 

features and also by tropical storms and cold 

fronts.  A ceilometer shows that some of the local 

convective storms developed in the western part 

of Puerto Rico are below 3 km; i.e., some storms 

are missed because NEXRAD radar is located 

about 104 km away from the studied area and 

reflectivity is measured at about 3 km above the 

surface because of the mountains. The use of a 

radar system with high resolution and covering 

the NEXRAD missing areas is important for flood 

forecasting and for understanding hydro 

meteorological processes.  The current research 

represents the first time that a high resolution 

radar technology was used for rainfall forecasting 
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and hydrological analyses in western Puerto 

Rico. 
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