
 1 of 25 

11.4 SPATIAL VARIABILITY OF SURFACE-LEVEL METEOROLOGICAL VARIABLES 

OVER ARCTIC SEA ICE 

 

Edgar L Andreas
*
 

NorthWest Research Associates, Inc.; Lebanon, New Hampshire 

 

 

1.  INTRODUCTION 

 

 Global and regional climate models and weather 

prediction models are based on equations of motion in 

which the relevant variables are continuous in space 

and time.  In the numerical representation of these 

models, however, space is divided into horizontal grid 

cells that range in size from a few kilometers to 100 km 

(e.g., Collins et al. 2006; Hunke et al. 2010; Bromwich et 

al. 2009; Tastula et al. 2012), and the assumption is that 

most surface-level variables have the same value over 

an entire grid cell.  For example, the 2-meter air 

temperature is taken to be the same value over a 

climate model grid cell that may be 100 km on a side.  I 

have data from the experiment to study the Surface 

Heat Budget of the Arctic Ocean (SHEBA; Uttal et al. 

2002) to assess how appropriate this assumption of grid 

cell uniformity is over Arctic sea ice. 

 During the year-long SHEBA deployment (October 

1997 to October 1998), the Atmospheric Surface Flux 

Group (ASFG; Andreas et al. 1999; Persson et al. 2002) 

maintained five sites with separations from one another 

of up to 12 km.  By comparing simultaneous data 

between pairs of sites, I can evaluate the spatial 

variability of the data and, thereby, see whether various 

near-surface atmospheric variables lose correlation with 

increasing separation.  For this analysis, I compare the 

monthly averages at each site and evaluate two spatial 

statistics for each season:  the spatial correlation 

function and the bias between sites as a function of 

separation. 

 The variables that the five ASFG SHEBA sites 

measured include near-surface barometric pressure, 

wind speed, direction, air temperature, and relative 

humidity; surface temperature; the four broadband 

radiation components, incoming and outgoing longwave 

and shortwave radiation; and the turbulent surface 

fluxes of momentum and sensible heat.  For each site, I 

also ran the bulk flux algorithm that Andreas et al. 

(2010a, 2010b) developed to compute the surface 

fluxes of momentum and sensible and latent heat. 
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Here, I report spatial statistics for the variables 

pressure, air temperature, wind speed, relative humidity, 

surface temperature, and the measured and bulk 

turbulent surface fluxes. 

 Not only will this analysis have implications for 

three-dimensional modeling with climate models and 

weather forecast models, it is germane to one-

dimensional modeling (Brun et al. 2008)—for example, 

with PIEKTUK-D (Chung et al. 2011), with the 

thermodynamic code in many sea ice models (Bitz and 

Lipscomb 1999; Hunke et al. 2010, 2013), and with 

single-column models (e.g., Lipscomb 2001; Holland 

2003; Morrison et al. 2005).  That is, after this analysis, 

we will be able to speculate on the area over which a 

one-dimensional model’s results are valid.  Likewise, 

this analysis will provide guidance on how far data 

measured on buoys drifting in sea ice can be 

extrapolated.  Conversely, this spatial analysis can be 

used to decide how closely drifting buoys or other such 

observational platforms must be placed to provide data 

that cover specific regions or the entire Arctic. 

 Here, I divide the SHEBA data series into the four 

typical Arctic seasons (e.g., Lindsay 1998; Brunke et al. 

2006)—autumn (September, October, November), 

winter (December, January, February), spring (March, 

April, May), and summer (June, July, August)—and 

calculate spatial statistics in each season. 

 I find that near-surface variables like pressure, air 

temperature, and wind speed are well correlated in all 

seasons up to the distance limit in our data, 12 km.  

Consequently, the assumption of grid cell uniformity 

seems appropriate for these variables—at least for grid 

cells of 12 km or less.  Although relative humidity 

generally shows weaker correlation, I ultimately decide 

that this result is an instrumentation problem (i.e., 

Andreas et al. 2002; Andreas and Jordan 2013); relative 

humidity is thus spatially homogeneous over grid cells 

up to 12 km, as are the other state variables. 

 The measured turbulent fluxes, friction velocity (u
*
) 

and sensible heat flux (Hs), are weakly correlated from 

site to site in all seasons, as turbulence variables are 
known to be.  The bulk fluxes of u

*
, Hs, and HL, the 

latent heat flux, on the other hand, are better correlated 

because they derive from variables that are well 

correlated:  namely, air temperature, wind speed, 

relative humidity, and surface temperature. 
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2.  SHEBA DATA 

 

 The SHEBA Atmospheric Surface Flux Group 

(ASFG) dataset that I consider here comprises 

observations at five levels on a 20 m tower in the main 

SHEBA camp (Persson et al. 2002; Grachev et al. 

2005).  Each tower level had a three-axis sonic 

anemometer/thermometer from Applied Technologies, 

Inc. (K-type sonic), that yielded the mean wind speed 

and direction and the turbulent fluxes of momentum and 

sensible heat by eddy covariance.  Each level also had 

instruments from Vaisala that measured mean air 

temperature and relative humidity. 

 The lower four levels on the tower were, nominally, 

at 2.2, 3.2, 5.1, and 8.9 m; the upper level changed from 

13.8 m in winter to 18.2 m in summer (Persson et al. 

2002; Brunke et al. 2006).  For the temperature, 

humidity, and wind speed measurements analyzed 

here, I used data from the lowest level that reported 

good data.  This was generally the 2.2 m level.  For the 

measured and modeled (described later) momentum 

and sensible heat fluxes, I used the median values from 

all levels that reported good data (Andreas et al. 2010a, 

2010b) because the fluxes are generally assumed to be 

constant over this height range. 

 Near this main tower were paired up-looking and 

down-looking Eppley broadband shortwave and 

longwave radiometers.  These were equipped with 

blowers to mitigate frost formation on the radiometer 

domes.  We calculated surface temperature with the 

data from the up-looking and down-looking longwave 

radiometers (Andreas et al. 2010a, 2010b). 

 Besides this main site, the Atmospheric Surface 

Flux Group maintained four remote sites that were 0.25 

to 12 km from the tower and were off the power grid for 

the main SHEBA ice camp.  These sites were 

instrumented with Flux-PAM stations (PAM means 

portable automated mesonet) from the instrument pool 

at the National Center for Atmospheric Research 

(Militzer et al. 1995; Horst et al. 1997).  Along with the 

main tower, three PAM sites ran for the entire SHEBA 

year:  Atlanta, Baltimore, and Florida. 

 Site Cleveland was also deployed early in the 

experiment but was damaged by a ridging event in early 

February 1998 and went off line for several months for 

repairs.  This equipment was redeployed in early April 

1998 at a site called Seattle and repositioned again in 

early June to a site called Maui.  I will refer to the data 

stream from this PAM station as C-S-M (i.e., Cleveland-

Seattle-Maui). 

 The PAM sites measured the same variables that 

the main ASFG site did but at one level only (cf. Brunke 

et al. 2006; Andreas et al. 2010a, 2010b).  That is, this 

equipment measured wind speed, direction, air 

temperature, relative humidity, momentum flux, and 

sensible heat flux at single levels that were 2–3 m 

above the surface.  I will henceforth refer to all of these 

low-level wind speed, temperature, and humidity data 

from both the tower and the PAM sites as the 2 m 

values. 

 The PAM stations used Vaisala sensors to 

measure air temperature and humidity (Andreas et al. 

2002).  All data from the main tower site and these PAM 

sites were averaged hourly.  In my subsequent 

analyses, I use these hourly data in all calculations. 

 Each PAM site measured broadband incoming and 

outgoing longwave (QL↓ and QL↑, respectively) and 

shortwave radiation (QS↓ and QS↑) with Eppley and Kipp 

and Zonen radiometers, respectively.  Because of high 

relative humidity throughout the year (Andreas et al. 

2002), the domes of these radiometers were prone to 

frost formation that compromised their measurements.  

And such icing was not obvious in the individual 

radiometer data.  In March and early April 1998, 

however, all PAM radiometers were fitted with heaters 

and blowers that kept the domes virtually ice free 

through the end of the experiment. 

 I will not talk specifically about the radiative fluxes 

because we describe them elsewhere (Andreas and 

Jordan 2013, 2015).  I mention them, however, because 

I calculated the surface temperature, Θs, from the 

measured longwave radiative fluxes according to (e.g., 

Andreas et al. 2010a, 2010b) 

 

  ( ) ( )
1/4-1/4

s L L
Θ = σε Q - 1 - ε Q

↑ ↓
   . (1) 

 

In this, ε (= 0.99) is the surface emissivity and σ 

(= 5.67051 × 10
–8

 W m
–2

 K
–4

) is the Stefan-Boltzmann 

constant.  Because QL↑ and QL↓ are hourly averages, Θs 

is the hourly value.  I later use Θs in the bulk flux 

algorithm. 

 For measuring wind speed, direction, and the 

turbulent momentum and sensible heat fluxes, each 

PAM site was originally deployed with a Gill R2 Solent 

sonic anemometer/thermometer.  The icing also 

affected these sonics.  We noticed, however, that the 

Applied Technologies sonics on the main tower shed 

this frost better than these Gill sonics.  Hence, by the 

end of February 1998, we had replaced the Gill sonics 

on all the PAM sites except Florida (which was near the 

main camp and easiest to maintain) with sonics from 

Applied Technologies. 

 As a second measure to prevent frost formation, 

we installed heaters on all the PAM sonics by the end of 

February 1998.  Unlike the radiometers, the sonics 

could identify bad data.  This data quality indicator was 

the percentage of good 10 Hz samples collected during 
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FIG. 1.  Examples from PAM site Atlanta of the hourly radiometer and sonic metrics for the duration of SHEBA.  The 

“Tower” radiometer metric is the difference between the incoming longwave radiation measured at Atlanta and near 

the main ASFG tower.  The “ARM” metric compares the Atlanta incoming longwave radiation with the simultaneous 

measurement at the SHEBA Atmospheric Radiation Measurement site.  The “Sonic” metric is the percentage of good 

data from the Atlanta sonic anemometer/thermometer during an hour. 

 

 

an hour (Fig. 1).  When that percentage fell below 

99.5%, the heaters turned on automatically and ran until 

the percentage of good data was again above 99.5%.  

In using data from the PAM sonics, I retained for 

analysis only hours with at least 20% good data (i.e., 12 

good minutes during an hour; Table 1). 

 I also screened for icing when evaluating the 

quality of the PAM radiometer data to retain for analysis.  

The PAM data files contain two metrics for evaluating 

icing (www.eol.ucar.edu/isf/projects/sheba/rad.isff.html) 

that I will henceforth refer to as radiometer metrics.  

Beside the ASFG radiometers near the main tower, 

which were well maintained and had efficient blowers, 

the Atmospheric Radiation Measurement (ARM) 

program also maintained a suite of radiometers in the 

main SHEBA camp.  The two PAM radiometer metrics 

compare simultaneous measurements of incoming 

longwave radiation at each PAM site with the incoming 

longwave radiation measured at the Tower and ARM 

sites (i.e., PAM – Tower and PAM – ARM; Fig. 1).  

When frost was present on the dome of an up-looking 

PAM longwave radiometer, that radiometer essentially 

sensed the near-surface air temperature, not the sky 

temperature.  As a result, a frosted PAM radiometer 

would generally yield higher values of incoming 

longwave radiation than would the clean tower or ARM 

up-looking radiometer. 

 Figure 1 shows hourly time series of these two 

radiometer metrics for PAM site Atlanta.  During the first 

four months of the experiment, before the PAM 

radiometers had effective blowers and heaters, both the 

tower and ARM radiometer metrics were often large 

positive numbers.  This is the signal of frosted PAM 

radiometers.  During this same period, the Atlanta sonic 

corroborates this diagnosis of icing events by showing 

corresponding periods of few good sonic  samples  (Fig. 
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TABLE 1.  Screening for quality of the variables from 
each PAM site.  As discussed in the text, variables 
from the main tower site were largely unaffected by 
frost formation but were screened for data quality 
using objective and subjective criteria before being 
compiled for the current analysis (Persson et al. 
2002; Grachev et al. 2007).  For brevity, the 
manuscript does not discuss all of the variables in 
this table, but all are available in all five datasets. 

Variable Screening 

Pressure PA* 

Air Temperature PA 

Relative Humidity PA 

Wind Speed SC**

Wind Direction SC 

Incoming Longwave Radiation RM***

Emitted Longwave Radiation RM 

Incoming Shortwave Radiation RM 

Reflected Shortwave Radiation RM 

Surface Temperature RM 

Measured Friction Velocity SC 

Measured Sensible Heat Flux SC 

Bulk Friction Velocity SC, RM 

Bulk Sensible Heat Flux SC, RM 

Bulk Latent Heat Flux SC, RM 

*PA indicates that the only test is whether the variable 
is present or absent in the dataset for a given hour. 
**In addition to the present or absent test, the variable 
is tested for sonic counts (SC).  Only values based on 
at least 20% good data for an hour are considered. 
***Besides the present or absent test, data are 
subjected to a test of the radiometer metric (RM).  An 
hourly value is retained only if RM < 20 W m–2, where 
RM compares the longwave radiation at a given PAM 
site with either the tower or ARM longwave radiation. 
 
 
1).  In my analysis, I conservatively rejected because of 
presumed icing any radiative fluxes for which the PAM –
Tower radiometer metric was greater than 20 W m–2.  If 
the tower radiometer metric was unavailable, I tested 
the PAM – ARM radiometer metric for the same limit. 
 Table 1 summarizes this screening for sonic and 
radiometer icing and notes which variables are affected 
by the screening.  Because computations of the 
turbulent  fluxes  from  the  SHEBA  bulk  flux   algorithm 

 

FIG. 2.  At any given hour, the five SHEBA sites taken 
two at a time for the spatial analysis provide 10 potential 
separation distances. 
 
 
require both surface temperature and wind speed, the 
bulk friction velocity and the sensible and latent heat 
fluxes face double jeopardy with this screening. 
 Figure 2 shows the connections among the sites.  
For calculating spatial statistics (described shortly), I 
look at simultaneous values of the same variable from 
paired sites.  Because I have five sites and am looking 
for pairs, I evaluate the number of combinations when 
five objects are considered two at a time to be ten.  In 
other words, each hour can provide up to ten different 
distances to use for computing the spatial statistics for 
any of 15 variables. 
 Each of the five ASFG locations also had a GPS 
that reported hourly latitude (Θ) and longitude (Φ).  If 
(ΘA, ΦA) represents the latitude and longitude at site A 
and if (ΘB, ΦB) represents the latitude and longitude at 
site B, I calculated the distance D between the two sites 
as (e.g., Weaver and Mirouze 2013) 
 
  D = RΔΩ . (2) 
 
Here, R (= 6372.8 km) is the radius of curvature of the 
Earth, and 
 

  

2

1/2
2

A B

2arcsin sin
2

cos cos sin
2

⎧⎡ ΔΘ⎪ ⎛ ⎞ΔΩ = +⎨ ⎜ ⎟⎢
⎝ ⎠⎪⎣⎩

⎫⎤ΔΦ ⎪⎛ ⎞Θ Θ ⎬⎜ ⎟⎥
⎝ ⎠⎦ ⎪⎭

 (3) 

 
is the arc length, where Α ΒΔΘ = Θ − Θ  and 

Α ΒΔΦ = Φ − Φ . 
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FIG. 3.  This histogram shows the number of hours of 

unique site pairings that are available within the SHEBA 

dataset for each distance interval of 0.5 km. 

 

 

 Figure 3 shows a histogram of the hours of unique 

data available for each distance.  Each distance bin in 

the figure is 0.5 km wide. 

 From the figure, we see that the vast majority of 

separations in our dataset are 6 km and less.  Most of 

the separations beyond 6 km occurred in September 

1998, when Baltimore drifted rapidly away from the 

other instruments.  That is, the largest separations arise 

from September data when Baltimore is paired with the 

other four sites. 

 

3.  SHEBA SITES 

 

 Although several other papers have documented 

the snow and ice characteristics of the SHEBA sites and 

the overall physical features of the SHEBA area (e.g., 

Uttal et al. 2002; Persson et al. 2002; Sturm et al. 2002; 

Perovich et al. 2003), for completeness, I briefly 

describe the five ASFG sites. 

 At the beginning of the experiment, in October 

1997, the snow cover was only a few centimeters deep 

at all sites.  Snow collected episodically through the 

winter and typically reached a maximum average depth 

of about 0.4–0.5 m near May 15, 1998.  The snow 

depth, of course, varied quite a bit horizontally about 

this average depending on the topography of the 

underlying sea ice (e.g., Sturm et al. 2002). 

 The snow began melting rapidly in early June and 

disappeared between June 14 and July 4, 1998, 

depending on the site, to expose bare sea ice.  The ice 

surface continued melting at all sites into early August.  

Snow began falling and accumulating around 

September 1, and all sites had a few centimeters of 

snow when we discontinued measurements in late 

September 1998. 

 The sea ice experienced a similar annual cycle.  At 

all sites, the ice grew on its underside through the 

winter.  At roughly the time when the snow cover 

disappeared at a site, the ice began melting there from 

below.  The ice generally melted at its surface and on its 

bottom faster than it formed during the winter such that, 

through the SHEBA year, the sea ice in the vicinity of 

the SHEBA camp thinned. 

 All sites were on ponded ice during the summer, 

nominally from June 10 until August 10, 1998.  The 

areal coverage of melt ponds in the vicinity of the 

SHEBA camp reached a maximum of 22% around 

August 1, 1998 (Perovich et al. 2002; Andreas et al. 

2010a). 

 The ASFG tower site and the PAM site at Florida, 

which was nearby, were placed on a smooth, multiyear 

floe that was 2 m thick at the time of deployment.  

Florida began reporting on October 22, 1997; on 

October 31, 1997, the tower site was the last ASFG 

equipment to come online.  This ice flow thickened to 

2.5–2.8 m through the winter and thinned to about 1.5 m 

by the end of the deployment. 

 On October 11, 1997, PAM site Atlanta was also 

deployed on a smooth, multiyear flow.  This flow, 

however, was only 1.5 m thick at the time.  Through the 

winter, the ice grew to over 2 m thick by early July 1998.  

It then thinned rapidly from top and bottom melting such 

that the ice was less than a meter thick when we 

dismantled Atlanta on September 30, 1998. 

 On October 12, 1997, we deployed the Baltimore 

PAM site on first-year sea ice in a refrozen polynya.  

This polynya was about 400 m north-south by 150 m 

east-west; the PAM site was near the southern edge.  

Multiyear, hummocky ice, some of which was over 3 m 

thick, surrounded the polynya.  Ice in the polynya itself 

was 0.4 m thick at the time of deployment, thickened to 

about 1.4 m by mid-May 1998, then thinned to about 

1 m by the time we decommissioned Baltimore on 

September 21. 

 We deployed site Cleveland on October 15, 1997, 

in a rubble field that extended a few hundred meters in 

all directions.  I know of no measurements of the ice 

thickness here but presume that the sea ice was at least 

3 m thick.  A ridging event in early February damaged 

the equipment at this PAM site, and it was taken out of 

service on February 6. 

 After repairs, the station was redeployed at site 

Seattle on April 16, 1998.  The station itself was placed 

on a refrozen melt pond of 50–60 m radius, but the 

surrounding ice beginning 100–200 m from the station in 

all directions was hummocky.  In early June, this site 

became untenable because of ice motion, and the 

equipment was moved to new site Maui on June 10.  



 6 of 25 

During the two month record from Seattle, the ice at the 

PAM site was 1–1.5 m thick. 

 Maui was on a multiyear floe with gently rolling 

hummocks.  There are no known thickness 

measurements from the site, but I presume that the sea 

ice was at least 2 m thick at the time of deployment.  

Maui was an active site with frequent leads and melt 

ponds near it until freeze-up started around September 

1.  We decommissioned Maui on September 20, 1998, 

when ice motion upset the PAM tripod and jeopardized 

the equipment. 

 

4.  QUANTIFYING THE SPATIAL VARIABILITY 

 

4.1.  Monthly Averages 

 

 As context for later calculations, I computed the 

monthly averages of surface-level pressure, 2 m air 

temperature, 2 m wind speed, and surface temperature, 

Figs. 4–7, respectively.  In each figure, the monthly 

average is plotted at the middle of the month.  For these 

and all subsequent plots, I invoked the screening for 

frost summarized in Table 1. 

 In each of Figs. 4–7, the averages from April 1998 

through the end of the experiment in September are 

very close.  This is the first clue that the spatial 

variability over the SHEBA site from late spring through 

early autumn was not severe.  In each figure, the error 

bars are ±2 standard deviations in the monthly average.  

Therefore, if error bars from different sites overlap, we 

have 99.8% confidence that the two monthly means are 

statistically the same.  Alternatively, if error bars do not 

overlap, we can reject at the 0.2% significance level the 

hypothesis that the monthly averages at the two sites 

were the same. 

 Extenuating circumstances, however, explain most 

of the obvious discrepancies among sites during the first 

six months of the experiment.  Before computing the 

averages in Figs. 4–7, I screened the data from the 

PAM sites for cases of sensor icing (see Table 1) and 

ignored hours for which the quality metrics suggested 

icing.  Figure 8 shows the number of hours of good data 

for each month from each site that went into computing 

the averages depicted in Figs. 4–7. 

 As Table 1 shows, I did three types of screening.  

The barometric pressure, air temperature, and relative 

humidity sensors were unaffected by icing.  The 

“Pressure” panel in Fig. 8 shows data returns from the 

pressure sensors and thus represents this class of icing-

resistant instruments.  Likewise, the “Sonic” panel 

shows data returns for wind speed and is therefore also 

relevant to wind direction and to both the measured and 

bulk turbulent fluxes.  Finally, the “Radiometer” panel 

shows returns from the up-looking longwave 

radiometers.  This panel is relevant to every variable 

that relies on a radiation measurement:  both incoming 

and outgoing longwave and shortwave radiation, 

surface temperature, and the fluxes calculated from the 

bulk flux algorithm (which requires surface temperature 

in the iteration). 

 Data returns from the PAM sonic anemometers 

became much more reliable in March 1998, when we 

began installing heaters on all the sonics.  Likewise, the 

PAM radiometers got more reliable in March when we 

fitted the radiometers with heaters and blowers.  The 

tower instruments were the last ones to come online; 

that is the reason for the small number of observations 

from the tower in October 1997.  Similarly, in September 

1998, Baltimore and Maui were decommissioned 

around September 20 while the other sites remained in 

operation longer. 

 By comparing the counts of good data in Fig. 8 

with the averages in Figs. 4–7, we can explain some of 

the obvious discrepancies among the monthly averages.  

For example, the outlying pressure in October 1997 

from the tower (Fig. 4) resulted because the tower 

sensor, which came online late, did not sample some of 

the higher pressures from earlier in October.  Similarly, 

the C-S-M PAM station was mostly out of service in 

March 1998; its March pressure (Fig. 4) thus does not 

come from the same range of air masses as for the 

other four sites. 

 Comparing averages of the 2 m wind speed (Fig. 

6) with the monthly retrieval rates (Fig. 8) reveals 

features of the instrument icing.  When the tower sonics 

were fully operational, starting in November 1997, until 

March 1998, when the PAM sonics all got heating, the 

monthly averaged wind speed from the tower is 

markedly lower than for the PAM sites.  Figure 8 shows 

that there were many more hours of good data from the 

tower sonics than from the PAM sonics during this 

period.  From Fig. 6, it is therefore obvious that the 

tower wind speeds represent typical fall and winter 

conditions.  Meanwhile, the PAM sonics provided good 

data only when the winds were high enough to preclude 

icing conditions or to blow any collected frost off the 

sonics. 

 

4.2.  Spatial Correlation Function 

 

 To compute the spatial correlation function for 

variable V in each season, I start by computing the 

covariance (Cov) for variable V between sites A and B 

(see Fig. 2) when they have separation D, where D 

represents the averaging interval [D–, D+) and 

D D 0.5km+ −− = .  That is, I compute this covariance as 
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FIG. 4.  Monthly averages of surface-level pressure from 

the five sites maintained by the SHEBA Atmospheric 

Surface Flux Group.  The error bars are ±2 standard 

deviations in the monthly mean. 

 

 

( ) ( ) ( )   
   ∑

DN

AD BDV,AB Ai A Bi B
i=1D

1
Cov D = V P - V V P - V

N
. (4) 

 

Here, PA, for example, is the position of site A, 

represented as (ΘA, ΦA), and ND is the number of good 

A and B pairs for variable V that are in distance interval 

[D–, D+) for a given season.  Subscript i is the index for a 

specific hour in the dataset.  Furthermore, 

 

  ( )
DN

XD Xi
i 1D

1
V V D

N =

= ∑  (5) 

 

is the average of these same data, where X denotes 

either site A or B. 

 To calculate the spatial correlation function, I also 

need the standard deviations (σV) for sites A and B for 

 

 

 
FIG. 5.  As in Fig. 4 but surface-level (nominally at 2 m) 

air temperature (T2). 

FIG. 6.  As in Fig. 4 but surface-level (nominally at 2  m) 

wind speed (U2). 

 

 

variable V for the given season when the separation is 

in the distance interval [D–, D+).  These come from the 

variances as 

 

  ( ) ( )∑
DN 2

2
XDV,X Xi

i=1D

1
σ D = V - V

N
, (6) 

 

where subscript X again denotes either site A or B. 

 From (4), (5), and (6), I ultimately compute the 

spatial correlation function for variable V, separation D, 

a given season, and sites A and B as 

 

  ( ) ( )
( ) ( )

V,AB

V,AB

V,A V,B

Cov D
ρ D =

σ D σ D
. (7) 

 

 This ρV,AB has the same properties as usual 

correlation coefficients.  It ranges from –1.00 to +1.00.  

If ND = 1, it is undefined because both variances are 

zero.  If ND = 2, ρV,AB is exactly +1.00 or –1.00:  Two 

 

 

FIG. 7.  As in Fig. 4 but for surface temperature (Θs). 
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FIG. 8.  Counts of the number of hours of good data for each month of SHEBA from three classes of instruments.  

The “Pressure” panel is typical of instruments that did not suffer icing (see Table 1):  barometric pressure, air 

temperature, and relative humidity.  The “Sonic” panel quantifies counts of good data left after screening for frosted 

sonics.  This panel represents returns for wind speed, direction, and both the measured and bulk turbulent surface 

fluxes.  The “Radiometer” panel represents any data streams that relied on any radiometer data:  namely, both 

incoming and outgoing longwave and shortwave radiation, surface temperature, and the bulk turbulent surface fluxes. 

 

 

points define a straight line, which has perfect positive 

or negative correlation. 

 I used the algorithms in Bendat and Piersol (1971, 

p. 126ff.) to evaluate 95% confidence intervals for the 

calculated ρV,AB(D) values.  These estimates suggest 

that we cannot have much confidence in correlation 

coefficients that are based on pairings for which 

ND < 15.  The following plots therefore exclude any 

ρV,AB(D) values that resulted from fewer than 15 paired 

observations. 

 A key point to remember for interpreting these 

computations is that the summation in (4) includes only 

terms for which good measurements of variable V were 

available simultaneously at both sites A and B.  And I 

use only these same data in (5) and (6).  This protocol is 

unlike how I computed the monthly averages in the 

previous section, where I used all good data at a single 

site to compute its average. 

 In formulating (7), I had hypothesized that the 

spatial correlation function (often called the 

autocorrelation function; e.g., Wilks 2006, p. 58f.) of any 

variable in our dataset would fall off from one with 

increasing distance between sites (Fig. 9).  This is the 

behavior of correlation functions computed from 

turbulence data that we are familiar with (e.g., Lumley 

and Panofsky 1964, p. 14ff.; Kaimal and Finnigan 1994, 

p. 33ff.; Andreas and Treviño 1997; Treviño and 

Andreas 2008). 

 As Fig. 9 depicts, if the computed spatial 

correlation function for variable V falls of approximately 

exponentially (Kaimal and Finnigan 1994, p. 35), we 

could characterize the spatial variability with the 

e-folding distance ∆ such that ρV,AB(D) from (7) could be 

represented as 
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FIG. 9.  Hypothesized behavior of the spatial correlation 

function.  Quantity ∆ is the e-folding distance. 

 

 

  ( ) ( )V,ABρ D = exp -D/∆ . (8) 

 

This e-folding distance is commonly taken as the 

separation beyond which variables are considered 

uncorrelated. 

 

4.3.  Bias 

 

 Another way to evaluate the spatial variability of 

surface-level variables over sea ice is to calculate the 

bias between sites for a given variable as a function of 

separation. 

 In the same notation as above, the bias for 

variable V between sites A and B in a given season is 

 

  ( ) ( ) ( )  ∑
DN

V,AB Ai A Bi B
i=1D

1
B D = V P - V P

N
. (9) 

 

As before, PA is the position of site A, and PB is the 

position of site B when the separation between these 

sites, D, is in the interval [D–, D+).  ND is the number of 

simultaneous values of variable V at the two sites that 

have separation D during the season. 

 As with the correlation coefficients, for these bias 

calculations, I eliminated as unreliable any values that 

resulted from fewer than 15 paired observations.  

Remember, all the statistics that I will discuss are 

seasonal calculations; each set of paired sites could 

thus include over 2000 paired observations of any 

variable in any season (Fig. 8).  Because of the 

screening for frost, however, some pairs early in the 

experiment had far fewer samples. 

 

5.  RESULTS 

 

 Although the SHEBA dataset includes 

simultaneous observations or calculations of 15 surface-

level variables, I do not report on the four radiative 

components here because we already considered these 

elsewhere (Andreas and Jordan 2013, 2015).  Here, I 

focus first on what are often called state variables—

those that define the atmospheric state.  Alternatively, 

documentation for the Community Ice Code (CICE; 

Hunke et al. 20013, their Table 1) identifies these 

variables—namely, pressure, air temperature, wind 

speed, and relative humidity—as quantities provided by 

the atmospheric model through a “flux coupler” to the 

sea ice model.  The sea ice model, in turn, computes 

the final variables that I review—surface temperature 

and the turbulent surface fluxes—and passes them back 

through the flux coupler to the atmospheric model. 

 

5.1.  Pressure 

 

 As a comparative variable with nearly perfect 

behavior in the context of our analysis, I show in Figs. 

10 and 11 the spatial correlation and bias functions for 

barometric pressure.  Pressure gradients are generally 

weak over Arctic sea ice (e.g., Brown 1981); hence, the 

correlation coefficient is virtually one at all separations in 

Fig. 10.  In this and all subsequent figures, the legend 

identifies the color scheme for the plotted points; and, in 

all cases, the first site listed is A, and the second site is 

B [see (9)]. 

 The bias between paired sites in Fig. 11 is almost 

always less than 0.4 mb and has no trend with 

separation between sites. 

 

5.2.  Air Temperature 

 

 Andreas and Jordan (2013, 2015) show the time 

series of hourly 2 m air temperature (T2) from each of 

the five SHEBA sites for the entire experiment (cf. Fig. 

5).  Temperatures started well below freezing in October 

1997, fell to near 40°C−  in December and January, 

rose slowly, and hovered around 0°C for the three 

months of summer.  From casual inspection, we saw 

that the air temperatures appear well correlated across 

the sites:  All traces show many simultaneous peaks 

and valleys of short duration.  Figure 12, which shows 

the spatial correlation functions for air temperature, 

confirms this result.  With the exception of three 

insignificant outliers, the spatial correlation functions for 

air temperature are above 0.95 in all seasons and for all 

separations.  No season shows the decay in correlation 

with separation that we hypothesized in Fig. 9. 

 Although the temperature bias between sites is
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FIG. 10.  The spatial correlation functions for surface-level pressure—that is, the correlation coefficient from (7) 

plotted as a function of separation—for the paired SHEBA sites shown in the legend.  The four panels represent the 

usual Arctic seasons:  autumn (Sep-Oct-Nov), winter (Dec-Jan-Feb), spring (Mar-Apr-May), and summer (Jun-Jul-

Aug). 

 

 

 

 
FIG 11.  As in Fig. 10, but this is the bias [see (9)] for pressure as a function of separation. 
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FIG. 12.  As in Fig. 10, but these are the spatial correlation functions for surface-level air temperature (nominally, 2 m 

temperature, T2). 

 

 

 

 

 

 
FIG. 13.  As in Fig. 11, but this is the bias in air temperature between sites. 
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erratic in Fig. 13, the absolute value of that bias is 

generally less than 0.5°C.  Moreover, we see at least 

one obvious case of instrumental bias.  The red circles, 

representing the Tower-Baltimore pair always show a 

negative bias.  Such consistent behavior in every 

season seems unlikely to have resulted from physical 

processes.  More likely, either the Tower was biased 

low, the Baltimore temperature was biased high, or 

both. 

 

5.3.  Wind Speed 

 

 Another state variable, the surface-level wind 

speed (nominally at 2 m, U2), is not as well correlated as 

air temperature but generally produces correlation 

coefficients above 0.9 (Fig. 14).  And these correlation 

coefficients have no tendency to decrease with 

increasing distance between paired sites.  Likewise, the 

bias for wind speed in Fig. 15 hovers around zero in all 

seasons and for all separations. 

 

5.4.  Relative Humidity 

 

 In the SHEBA dataset, surface-level relative 

humidity, another state variable, behaves much more 

erratically than air temperature and wind speed.  

Andreas and Jordan (2013) showed the spatial 

correlation functions for the SHEBA surface-level 

relative humidity data and concluded that inconsistent 

instrument response among the SHEBA relative 

humidity sensors explains this poor spatial coherence.  

After all, Andreas et al. (2002) had already 

demonstrated that, when figured with respect to 

saturation over ice, relative humidity measurements 

over polar sea ice all hover around 100% in all seasons. 

 Consequently, there is no physical reason why 

relative humidity should be markedly different from site 

to site.  Rather, the seemingly erratic behavior in our 

plots of the statistics for relative humidity is an artifact of 

instrument issues (Andreas et al. 2002; Andreas and 

Jordan 2013).  Hence, I do not show these plots but 

simply conclude, following Andreas et al. (2002), that 

relative humidity is another state variable that is well 

correlated for long distances over sea ice, as air 

temperature and wind speed are. 

 

5.5.  Surface Temperature 

 

 In a physical sense, surface temperature, Θs, could 

be a state variable; but, because in our dataset we 

calculated it from the incoming and outgoing longwave 

radiative fluxes [see (1)], it could also be considered a 

flux variable.  In fact, starting with even the earliest 

models (e.g., Maykut 1978; Parkinson and Washington 

1979), most sea ice models compute Θs by balancing 

the surface energy budget. 

 As with the other state variables, the spatial 

correlation functions for surface temperature are high for 

all separations (Fig. 16).  With the exception of a few 

outliers, the correlation coefficients in Fig. 16 are above 

0.9 in all seasons.  Furthermore, those correlation 

functions have no trend with increasing separation. 

 Uncertainty assessments in Persson et al. (2002) 

and Andreas et al. (2010a, 2010b) place errors on 

individual measurements of surface temperature at 

±0.5–0.6°C.  Hence, the spatial bias shown in Fig. 17, 

which  is often of order 0.5°C, is compatible with 

measurement uncertainties. 

 The winter panel (Dec-Jan-Feb) in Fig. 17 seems 

to have larger biases—several larger than 0.5°C—than 

in the other three panels.  Again, these winter biases 

may be influenced by the poorer sampling statistics 

because of radiometer icing (Fig. 8). 

 Overland et al. (2000) presented an assessment of 

surface temperature that shows much more spatial 

variability than we found.  On the basis of satellite data 

from an advanced very high resolution radiometer 

(AVHRR) collected in the vicinity of the SHEBA ice 

camp in December 1997 and January and February 

1998, Overland et al. documented fairly broad 

distributions of surface temperature that tended to be 

skewed toward warmer surfaces.  These warm tails in 

the AVHRR images obviously represented small 

fractional coverage by refrozen leads. 

 In placing our SHEBA ASFG sites, we admittedly 

avoided thin ice in refrozen leads because we wanted 

the sites to survive.  Consequently, all of our sites, 

except Baltimore, were preferentially on thicker ice 

where we were likely to see only small differences in 

surface temperature between sites. 

 Baltimore, however, was intentionally placed on a 

refrozen polynya where the ice was 0.4 m thick at the 

time of deployment.  And this thin-ice site does seem to 

corroborate the observations by Overland et al. (2000).  

In Fig. 17, in autumn and winter, the surface 

temperature at Baltimore is consistently higher than at 

the multiyear ice sites:  the tower, Atlanta, and Florida.  

In other words, in the autumn and winter panels in Fig. 

17, the “Tower-Balt” and “Atl-Balt” points are negative 

while the “Balt-Flor” points are positive.  In each 

sequence, Baltimore has the higher seasonal surface 

temperature. 

 These biases fade to near zero in spring and 

summer.  In spring, the ice at all sites has thickened 

and, thereby, minimized surface heating from the 

warmer ocean.  In summer, the entire near-surface 

environment is tending to 0°C.  The same biases that 

we saw in October through February return in 
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FIG. 14.  As in Fig. 10, but these are the spatial correlation functions for surface-level wind speed (nominally at 2 m, 

U2). 

 

 

 

 

 

 
FIG. 15.  As in Fig. 11, but this is the bias in wind speed between sites. 
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FIG. 16.  As in Fig. 10, but these are the spatial correlation functions for surface temperature, Θs, which I calculated 

from (1). 

 

 

 

 

 
FIG. 17.  As in Fig. 10, but this is the spatial bias for surface temperature. 

 



 15 of 25 

September 1998, however, when Baltimore still features 

the thinnest ice. 

 Haggerty et al. (2003) also studied the variability in 

surface temperature around the SHEBA camp, but their 

measurements were from an aircraft in spring (May 

1998) and summer (July 1998).  As in our analysis, 

Haggerty et al. found neither spring nor summer showed 

marked spatial variability in surface temperature; 

standard deviations in surface temperature during 

various flight legs were typically 0.5°C, as were our bias 

values in Fig. 17.  In both months, however, open and 

refreezing leads stood out as being significantly warmer 

than the sea ice, which, of course, was not warmer than 

0°C.  We did not adequately measure surface 

temperatures of leads at any or our sites. 

 

5.6.  Turbulent Surface Fluxes 

 

 I next consider the turbulent surface fluxes of 

momentum (τ) and sensible (Hs) heat.  Because I report 

here both the measured fluxes and the fluxes computed 

from a bulk flux algorithm, I need to briefly describe that 

algorithm. 

 The turbulent fluxes and their parameterizations 

generally take the form (e.g., Fairall et al. 1996, 2003; 

Andreas et al. 2010a, 2010b) 

 

  2 2

* Dr r= -ρuw = ρu = ρC Sτ , (10a) 

 

  ( )s p p Hr r s rH = ρc wθ = ρc C S Θ - Θ , (10b) 

 

  ( )L v v Er r s rH = ρL wq = ρL C S Q - Q . (10c) 

 

Here, u, w, θ, and q are, respectively, the turbulent 

fluctuations in the along-wind velocity, vertical velocity, 

air temperature, and specific humidity.  The overbars 

denote time averages; hence, uw , θw , and wq  

indicate how we measured the momentum flux, sensible 

heat flux, and latent heat flux (HL).  Sr, Θr, and Qr are 

average effective wind speed, potential temperature, 

and specific humidity at reference height r; Θs is again 

the surface temperature; and Qs is the specific humidity 

at the surface, which I evaluated as the saturation value 

at Θs.  The ρ, cp, and Lv are the air density, the specific 

heat of air at constant pressure, and the latent heat of 

vaporization or sublimation.  Equation (10a) also defines 
the friction velocity, u

*
. 

 From measurements of uw , θw , wq , Sr, Θr, Qr, 

and Θs, Andreas et al. (2010a, 2010b) developed 

parameterizations for the turbulent transfer coefficients 

CDr (the drag coefficient appropriate for height r), CHr, 

and CEr (the scalar transfer coefficients for height r). 

 In a model or a standalone analysis, the right sides 

of (10) are solved iteratively to compute the fluxes.  

Other equations in this iteration are the 

parameterizations for CDr, CHr, and CEr and an equation 

for the Obukhov length, L, on which the transfer 

coefficients depend.  This is 

 

  

−
  

= − +   ρ ρ+   

1

s L

3
p v*

H Hk g 0.61T
L

c LTu 1 0.61Q
. (11) 

 

Here, g is the acceleration of gravity; k (= 0.40), the von 

Kármán constant; and T  and Q , average air 

temperature and specific humidity in the near-surface 

layer. 

 Using the bulk flux algorithms for summer and 

winter sea ice reported in Andreas et al. (2010a, 2010b; 

available in Fortran at 

www.nwra.com/resumes/andreas/software.php), I 

iteratively solved (10) and (11) for every hour at every 

SHEBA site that had adequate forcing data for the hour.  
In the discussion to follow, I use u

*
 as a surrogate for 

both the measured and modeled momentum flux. 

 Figure 18 shows the spatial correlation functions 
for the measured u

*
; Fig. 19 is the associated plot of 

spatial bias for the measured u
*
. 

 Both plots have different character than the 

previous plots of correlation and bias.  The scatter in 
these figures is much wider because u

*
 is a turbulence 

variable measured by eddy-covariance.  Measured 

turbulent fluxes are known to have a typical minimum 

uncertainty of about ±10% for u
*
 and ±20% for Hs and 

HL (e.g., Fairall et al. 1996; Finkelstein and Sims 2001; 

Andreas et al. 2010b).  This minimum uncertainty is 

usually associated with random error (e.g., Vickers and 

Mahrt 1997; Mahrt 2010); Finkelstein and Sims (2001) 

term this uncertainty the sampling error.  Quite simply, 

the turbulent fluctuations u, w, θ, and q are random 

variables; covariances formed from them have inherent 

randomness among measuring sites even if the surface 

is horizontally homogeneous. 

 Both the bias and correlation also suffer from 

sensor icing of the Flux-PAM sonic anemometers from 

October 1997 to almost the end of February 1998, when 

we fitted heaters to the sonic arms and established a 

heating protocol.  Unlike the radiometers, however, the 

PAM sonics flagged data when icing was occurring; 
hence, I rejected those data in my calculations of u

*
 and 

Hs.  Icing episodes, however, did reduce the number of 

good hourly measurements for use in the analysis.  

These smaller numbers of samples increased the 

uncertainty in the correlation coefficients and in the 

biases as evidenced by the larger scatter in both Figs. 
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FIG. 18.  As in Fig. 10, but this figure shows the spatial correlation functions for the measured friction velocity, u

*
; see 

(10a). 

 

 

 

 

 

 
FIG. 19.  As in Fig. 11, but this is the bias in the measured friction velocity. 
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FIG. 20.  As in Fig. 18, but these are the spatial correlation functions for the friction velocity computed from the bulk 

flux algorithm. 

 

 

 

 

 

 
FIG. 21.  As in Fig. 19, but this is the spatial bias for the bulk friction velocity. 
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18 and 19 for October through February 1998. 

 The best quality data in Fig. 18—the September 

1998 data from Baltimore and the spring and summer 

panels—suggest that the correlation coefficient for 

measured friction velocity was typically above 0.8 and 

had no tendency to decrease with increasing 

separation.  The same best quality data in the bias plot, 
Fig. 19, suggest a fairly small bias in measured u

*
 

between sites—almost always less than 0.05 m s
–1

 

(5 cm s
–1

)—and, as usual, no tendency to change with 

separation. 

 As companions to Figs. 18 and 19, I show in Figs. 

20 and 21 the spatial correlation functions and the 

spatial bias for the bulk friction velocity that results from 

running the Andreas et al. (2010a, 2010b) bulk flux 

algorithm for each SHEBA site.  This bulk friction 

velocity is analogous to what a numerical model would 

produce when it computes flux boundary conditions and, 

therefore, is probably more relevant to interpreting the 

assumption of grid cell uniformity than is the previous 

analysis of measured friction velocity. 

 Both Figs. 20 and 21 are in sharp contrast to Figs. 

18 and 19.  In Fig. 20, the correlation coefficient is 

almost always greater than 0.90 in all seasons; and in 
Fig. 21, the bias in the bulk u

*
 is always less than 

±0.05 m s
–1

 and usually less than ±0.02 m s
–1

.  I 

attribute this better behavior in the bulk friction velocity 

than in the measured friction velocity to how I obtained 
the bulk u

*
.  It derived from the mean meteorological 

variables wind speed, temperature, humidity, and 

surface temperature through (10) and (11).  Because I 

have already established with Figs. 12, 14, and 16 that 

these variables are highly correlated, quantities 

computed from them should be also. 

 The spatial correlation functions for the measured 

sensible heat flux, Hs, in Fig. 22 are even more wild than 

for the measured friction velocity.  Again, Hs is a 

turbulence variable that has inherent random scatter; 

but, to compound matters over sea ice, the sensible 

heat flux is generally small in all seasons.  Andreas et 

al. (2010a, 2010b) showed that, during SHEBA, 

measured hourly values of the sensible heat flux were 

mostly between –20 and +20 W m
–2

 (cf. Persson et al. 

2002; Brunke et al. 2006).  With small values common 

and uncertainty in any individual measurement large, 

one site in the correlation analysis could show a positive 

heat flux for a given hour while another site could show 

a negative flux.  Pairing these data obviously degrades 

the correlation coefficient. 

 As in Fig. 18, the October 1997 through February 

1998 data in Fig. 22 suffer also from icing of the PAM 

sonics.  This period clearly produces the poorest 

correlation coefficients in Fig. 22.  The spring and 

summer panels and the September 1998 data from 

Baltimore in Fig. 22, which do not reflect instrument 

problems, generally have higher correlation coefficients. 

 The small sensible heat fluxes do lead to small 

biases in Fig. 23.  The winter (Dec-Jan-Feb) panel in 

Fig. 23 has the most erratic biases; I again attribute 

these to data sparsity resulting from icing of the PAM 

sonics.  The other panels in Fig. 23 depict biases that 

are generally within 5 W m
–2

 of zero.  We see no 

evidence of any dependence on separation in the 

biases in Fig. 23. 

 As with the bulk friction velocity, the surface 

sensible heat fluxes that I computed with the bulk flux 

algorithm are more comparable to what a weather or 

climate model would simulate than are the measured 

fluxes in Figs. 22 and 23.  Figures 24 and 25 therefore 

show the spatial correlation functions and the bias for 

the bulk sensible heat flux. 

 In contrast to the bulk friction velocity, for which 

the spatial correlation functions (Fig. 20) were better 

behaved than for the measured friction velocity (Fig. 

18), the spatial correlation functions for the bulk sensible 

heat flux in Fig. 24 have scatter similar to the correlation 

function for measured sensible heat flux (Fig. 22).  I 

again attribute this behavior to the generally small heat 

fluxes in all seasons and the associated small surface-

air temperature difference [i.e., Θ − Θs r  in (10b)] that 

drives the sensible heat flux in the bulk flux algorithm.  

That is, with the inherent uncertainty in Θs of ±0.5°C, 

when Θ − Θs r  is small, Θ − Θs r  could be measured as 

slightly positive at one site but slightly negative at 

another site.  The computed sensible heat fluxes would 

then have opposite signs, and the correlation between 

the sites would degrade. 

 On the other hand, the bias in bulk sensible heat 

flux that Fig. 25 depicts is similar to what we saw with 

the measured sensible heat flux in Fig. 23.  Again, the 

bias in Fig. 25 is small because all of the sensible heat 

fluxes are small in all seasons:  The difference between 

two small numbers is always a small number. 

 Because we had only one measurement of latent 

heat flux at SHEBA—at one level on the main 20 m 

tower—I cannot assess the spatial variability of the 

measured latent heat flux.  Nevertheless, I could still 

compute the bulk latent heat flux at each SHEBA site for 

the hours with sufficient forcing data.  Figures 26 and 27 

show the spatial correlation functions and the bias for 

the bulk latent heat flux. 

 These two plots have characteristics similar to the 

comparable plots for the bulk sensible heat flux:  The 

correlation functions can be pretty wild, but the biases 

are small.  I see no dependence on separation in either 

plot.
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FIG. 22.  As in Fig. 10, but these are the spatial correlation functions for the measured sensible heat flux, Hs; see 

(10b). 

 

 

 

 

 

 

 
FIG. 23.  As in Fig. 11, but this shows the spatial bias in measured sensible heat flux. 
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FIG. 24.  As in Fig. 22, but these are the spatial correlation functions for the bulk sensible heat flux computed from 

the bulk flux algorithm, (10) and (11). 

 

 

 

 

 

 
FIG. 25.  As in Fig. 23, but this is the spatial bias for the surface sensible heat flux from the bulk flux algorithm. 
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 If anything, the bulk latent heat flux panels in Fig. 

26 may show slightly better correlation than the panels 

for bulk sensible heat flux do.  (Notice the difference in 

vertical scales in Figs. 24 and 26.)  I speculate that this 

better correlation may result because, at SHEBA, the 

latent heat flux tended to be mostly positive while the 

sensible heat flux was more evenly distributed between 

positive and negative fluxes (Andreas et al. 2013).  That 

is, in the correlation calculations, a positive sensible 

heat flux at one site might be frequently paired with a 

negative flux at another site.  Such a pairing would 

degrade the correlation.  For the latent heat flux, in 

contrast, positive-positive pairings would be more 

common. 

 The biases in bulk latent heat flux in Fig. 27 are 

typically less than about 2 W m
–2

 in magnitude.  These 

small biases simply reflect the small magnitude of the 

latent heat flux over sea ice, where the magnitude of the 

latent heat flux is generally reported to be smaller than 

10 W m
–2

 in all seasons (e.g., Persson et al. 2002; 

Andreas et al. 2010a, 2010b). 

 

6.  DISCUSSION AND CONCLUSIONS 

 

 This analysis of 11 different surface-level 

meteorological variables obtained from a year of 

SHEBA data generally supports the assumption of 

uniformity in these variables over model grid cells up to 

12 km across.  The variables that I analyzed were 

barometric pressure; surface-level (i.e., ~2 m) air 

temperature, wind speed, and relative humidity; surface 

temperature; and both the measured and bulk turbulent 

surface fluxes. 

 I computed three metrics to judge the spatial 

variability of these variables:  the monthly average and 

seasonal values of the spatial correlation function (7) 

and the spatial bias (9).  Especially in spring, summer, 

and early autumn, when we had the most complete data 

returns, the monthly averages hinted at the uniformity in 

conditions.  In plots of the seasonal metrics as functions 

of separation between sites in each of the four Arctic 

seasons—autumn, winter, spring, and summer—I saw 

no obvious degradation in any of the functions as the 

separation between sites increased, contrary to my 

original hypothesis (i.e., Fig. 9).  All seasons included 

results for separations up to 6 km.  The calculations for 

autumn had separations up to 12 km. 

 Admittedly, our selections for the five SHEBA sites 

could have affected these conclusions.  We deployed all 

five original sites on fairly thick ice.  Site Baltimore 

started on the thinnest ice, a refrozen polynya that had 

ice 0.4 m thick in autumn 1997.  These choices certainly 

affected the range in surface temperatures that we 

measured, especially in winter when thin ice has a 

warmer surface than thicker ice (e.g., Overland et al. 

2000). 

 From this bias in our sites toward thicker ice and 

from recognizing the known increase in surface 

temperature over thinner ice in winter (Makshtas 1991, 

p. 32ff.; Overland et al. 2000), I conclude that—at least 

in winter—accounting for the range in surface 

temperature over a model grid cell as a function of ice 

thickness will be necessary (e.g., Thorndike 1992; 

Hunke and Bitz 2009).  Most modern sea ice models 

recognize this fact and include a distribution of ice 

thicknesses within a single grid cell (e.g., Bitz et al. 

2001; Lipscomb 2001; Lindsay 2003; Holland et al. 

2006).  The turbulent sensible and latent heat fluxes, 

which respond to surface temperature, may also need to 

be evaluated as functions of ice thickness (e.g., Lindsay 

2003).  The emitted longwave radiation may also vary 

with ice thickness because it goes as the fourth power 

of the surface temperature. 

 In late spring and summer, on the other hand, 

when the surface ocean, the sea ice, and the air all tend 

to 0°C, spatial uniformity in surface temperature is a 

better assumption.  Of course, Haggerty et al. (2003) did 

find significantly higher surface temperatures in leads 

than for the surrounding ice during aircraft flights in May 

and July of the SHEBA year.  The May observations 

found that the ice was still relatively cool compared to 

the open water or new ice in leads.  During the July 

observations, the leads were slightly above freezing 

from solar heating while the sea ice was near freezing.  

This heated surface layer may not have existed, 

however, if the wind mixing had been stronger (cf. 

Paulson and Pegau 2001).  Still, even during the melting 

season, treating leads individually within a grid cell may 

be necessary. 

 We could place no instruments over open water, 

like leads or polynyas, although our instruments did 

adequately sample over melt ponds during the summer.  

Conceivably, the 2 m air temperature could be higher 

over open ocean water than over compact sea ice, at 

least in winter.  Hence, again, significant differences in 

surface-level air temperature could exist over a model 

grid cell.  But observations of Arctic leads suggest that, 

even in winter, the heating from the water surface does 

not reach very far above that surface:  The heat is all 

blown downwind.  Andreas et al. (1979) show 

temperature profiles measured over wintertime leads 

with widths up to 85 m.  In all of these, the temperature 

at 2 m is within a few tenths of a degree Celsius of the 

temperature of the upwind air over compact sea ice 

despite the fact that the leads were 20°–25°C warmer 

than the upwind ice.  Makshtas (1991, p. 34f.) made the 

same observations over a polynya that was up to 119 m 

wide.  In other words, the 2 m air temperature can be 
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FIG. 26.  As in Fig. 24, but these are the spatial correlation functions for the bulk latent heat flux computed from the 

bulk flux algorithm, (10) and (11). 

 

 

 

 

 
FIG. 27.  As in Fig. 25, but this shows the spatial bias for the bulk latent heat flux computed from the bulk flux 

algorithm. 
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assumed homogeneous over grid cells up to 12 km, 

even if the grid cell contains open water.  The higher 

surface temperature and lower albedo of the open water 

must, nevertheless, still be accounted for in the radiative 

fluxes and in the turbulent heat fluxes. 

 The surface-level wind speed is similarly well 

mixed 2 m above the surface in all seasons whether the 

surface is water or ice. 

 In summary, this analysis justifies the assumption 

that, over the central Arctic ice pack, the variables 

surface-level pressure, air temperature, wind speed, 

and humidity are uniform over model grid cells up to 

12 km. 

 In the cold season, the surface temperature is not 

uniform over grid cells that include open water or a 

range of ice thicknesses.  Conduction through the ice 

from the relatively warm surface ocean affects the 

surface temperature of the bare ice.  Even a small 

amount of snow cover, however, will homogenize these 

surface temperatures because conduction through snow 

is much slower.  Any variable that responds strongly to 

surface temperature—like emitted longwave radiation 

and surface sensible and latent heat fluxes—may, 

therefore, also be heterogeneous over grid cells that 

include both thin and thicker ice and a variety of snow 

depths. 

 In summer, our data show little evidence of spatial 

variability in surface temperature.  Aircraft observations 

during the SHEBA summer (Haggerty et al. 2003) that 

could adequately sample leads, do suggest surface 

temperatures in this open water that are 1–2°C above 

freezing (also Paulson and Pegau 2001).  Again, 

variables that are sensitive to surface temperature may 

need to be treated as heterogeneous over model grid 

cells in summer. 

 In the end, some readers may view this analysis 

as weakly relevant since Arctic sea ice is thinner in 

winter and open water is more prevalent in summer now 

than during the SHEBA year.  But remember, climate 

simulations, for instance, require a spin up of several 

centuries (e.g., Collins et al. 2006; Hurrell et al. 2013) 

before they can accurately simulate current conditions 

or predict future climate.  My analysis is certainly 

pertinent to these several hundred years before present. 
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