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1. INTRODUCTION 
 
Every year in the Midwest and Great Plains, 
widespread greenness forms in conjunction with 
the latter part of the spring-summer growing 
season. This prevalent greenness forms as a 
result of the high concentration of agricultural 
areas having their crops reach their maturity 
before the fall harvest. This time of year also 
coincides with an enhanced hail frequency for the 
Great Plains (Cintineo et al. 2012). These severe 
thunderstorms can bring damaging winds and 
large hail that can result in damage to the surface 
vegetation. The spatial extent of the damage can 
relatively small concentrated area or be a vast 
swath of damage that is visible from space.  
 
These large areas of damage have been well 
documented over the years. In the late 1960s 
aerial photography was used to evaluate crop 
damage caused by hail. As satellite remote 
sensing technology has evolved, the identification 
of these hail damage streaks has increased. 
Satellites have made it possible to view these 
streaks in additional spectrums. Parker et al. 
(2005) documented two streaks using the 
Moderate Resolution Imaging Spectroradiometer 
(MODIS) that occurred in South Dakota. He noted 
the potential impact that these streaks had on the 
surface temperature and associated surface fluxes 
that are impacted by a change in temperature.  
Gallo et al. (2012) examined at the correlation 
between radar signatures and ground 
observations from storms that produced a hail 
damage swath in Central Iowa also using MODIS. 
Finally, Molthan et al. (2013) identified hail 
damage streaks through MODIS, Landsat-7, and 
SPOT observations of different resolutions for the 
development of a potential near-real time 
applications. 

The manual analysis of hail damage streaks in 
satellite imagery is both tedious and time 
consuming, and may be inconsistent from event to 

event. This study focuses on development of an 
objective and automatic algorithm to detect these 
areas of damage in a more efficient and timely 
manner. This study utilizes the MODIS sensor 
aboard the NASA Aqua satellite. Aqua was 
chosen due to an afternoon orbit over the United 
States when land surface temperatures are 
relatively warm and improve the contrast between 
damaged and undamaged areas. This orbit is also 
similar to the orbit of the Suomi-National Polar-
orbiting Partnership (NPP) satellite. The Suomi 
NPP satellite hosts the Visible Infrared Imaging 
Radiometer Suite (VIIRS) instrument, which is the 
next generation of a MODIS-like sensor in polar 
orbit.  

2. DATA 

 
Data for this work comes from NASA’s Land 
Processes Distributed Active Archive Center (LP-
DAAC). The data that is stored in the LP-DAAC’s 
data pool is easily accessible via an ftp website. 
The level 2 data is processed and projected onto a 
global sinusoidal grid. This makes it easy for an 
end user to select only areas that are needed for 
analysis. 

 
The MYD09GQ product was used to create NDVI 
products for this study. This product provides the 
daily surface reflectance values for bands 1 (0.65 
um red) and 2 (0.86 um near infrared). These 250 
meter bands are the necessary bands required for 
computing NDVI.  

This study also incorporates land surface 
temperature (LST) provided by the Level 3 
MY11A1 product, derived from MODIS bands 31 
(11.03 µm thermal infrared) and 32 (12.02 µm 
thermal infrared), with a spatial resolution of 1 
kilometer. Quality indicators provided with each 
product were used to identify and remove clouds 
from each channel prior to work done in this study.  



Multiple tiles of both products were needed for this 
case study and subsequent additional case 
studies.  The MODIS Reprojection Tool (MRT) 
was used to combine multiple tiles and to provide 
nearest neighbor resampling of the 1 km LST tiles 
to 250 m to match the resolution of the NDVI 
generated products. 

Hail occurrence was estimated from radar 
observations using the National Severe Storm 
Laboratory’s (NSSL) Maximum Expected Size of 
Hail (MESH) product, which provides composited 
radar data over a grid. This 1 km by 1 km 
composite comes from the Hail Detection 
Algorithm (Witt et al. 1998) and was used to 
attempt to correlate degrees of damage with radar 
estimated hail size. 

3. 18 AUGUST 2011 CASE STUDY 
 
Various techniques were explored in this study to 
evaluate the effectiveness of using NDVI change 
and other approaches.  This study evaluates three 
techniques using hail damage streaks following 
the 18 August 2011 hail event in the Central Plains 
previously examined by Molthan et al. (2013).  
 
During the late evening of 18 August 2011 and 
into the early morning hours of 19 August 2011, 
severe thunderstorms with large hail and 
damaging winds moved from northeast Nebraska 
southeastward along the Missouri River and into 
southwestern Iowa and northwestern Missouri. 
These storms also had damaging winds 
associated with them per SPC Storm Reports (Fig 
2a). According to the MESH product the largest 
radar indicated hail upwards in size of 12 cm, or 
~5 in. (Figure 2b).  
 
Figure 1 shows a true color MODIS image from 
morning of 25 August 2011 (reproduced from 
Molthan et al. 2013). The image shows three 
distinct areas of damaged vegetation that were a 
result of the severe thunderstorms. The area of 
damage just to the southeast of Yankton will not 
be analyzed in this paper, as this study focuses on 
two prominent areas of damage in southwestern 
Iowa are. These areas were chosen to be 
analyzed as they are much bigger than the one to 
the north. Colored boxes represent observations in 
the Molthan et al. (2013) study using other 
sensors with higher spatial resolution.  
 

4. TECHNIQUES 
  
4.1 NDVI Difference 

 
The simplest method for detecting damage is 
producing an NDVI difference derived from NDVI 
values observed before and after the severe 
weather event. This type of analysis has been 
performed on several prominent hail damage 
streaks over the past decade (Molthan et al. 2013; 
Gallo et al. 2012; Parker et al. 2005). The primary 
objective of this technique is to examine 
quantitative trends between before storm imagery 
and after storm imagery. Figure 3a shows a 14-
day NDVI composite valid on the afternoon of 18 
August. This composite shows a very health 
vegetation signal with values across the domain 
well above 0.7. Urban areas and the Missouri 
River flooding are also noticeable as areas that 
have NDVI values of 0.0 or less.  
 
Figure 3b shows a single day NDVI image taken 
the next afternoon on 19 August 2011. This 
snapshot shows just a few clouds in the middle of 
the image. This scene also shows two faint 
streaks on the Iowa-Missouri border. These 
streaks appear to be the result of high winds and 
large damaging hail associated with the overnight 
storms. These streaks appear to have NDVI 
values in the range of 0.4 to 0.6, or a significant 
reduction from just 24 hours prior. Figure 3c 
shows this 1 day difference is very apparent. The 
two streaks that were noticeable in Figure 3b, 
stand out much more now. Most of the areas in 
the streak experienced a NDVI change of -0.2 to -
0.4  
 
To investigate the relationship between radar-
estimated hail size and vegetation damage (NDVI 
change), a box and whiskers plot was created 
(Figure 3d). This analysis shows that there was 
little to no change in NDVI for areas that saw radar 
estimated hail sizes between 2.54 cm (1.00 in.) 
and 5.08 cm (2.00 in.). Once the radar estimated 
hail was estimated to be over 5.08 cm, a 
downward trend in median values of each bin is 
apparent. This downward signal grows stronger as 
the vegetation continues to weaken and wilt with 
later observations (not shown). It is important to 
remember that radar estimated hail sizes are 
calculated above the ground and from reflectivity 
measured at the beam height.  Surface reports of 
hail size may differ from what is actually observed 
at the ground due to melting or other radar 
sampling factors.  



  
4.2 Vegetation Health Index (VHI) 

 
The analysis of hail streaks by Parker et al. (2005) 
identified an increase in land surface temperature 
in and around damaged areas of vegetation. The 
increase in land surface temperature is a result of 
the decreased albedo in the damaged area, 
allowing for more solar radiation to be absorbed by 
the surface. Based upon their results, land surface 
temperature may also provide information leading 
to improved detection of damage areas. This study 
evaluates the use of the Vegetation Health Index 
(VHI, Kogan 2001) as a means of identifying 
damage areas.  The VHI was originally developed 
to monitor vegetation for stress due to drought 
conditions. VHI is a comprised of two indices, the 
Vegetation Condition Index (VCI), based upon 
NDVI, and the Temperature Condition Index (TCI), 
based upon brightness temperature, and are 
combined to create the VHI. These indices are 
calculated using multi-year minimums, means, and 
maximums of NDVI and land surface 
temperatures.  
 
 
 
 
 
 
 
Because this work focuses on short term changes 
to vegetation, uses land surface temperature, and 
the vegetation pattern can be vary from year to 
year, Kogan’s original equations were modified. 
This modification allows for the indices to be 
computed on a much shorter time scale. Instead of 
using multi-year minimums, means, and 
maximums, 14-day 10th, 50th and 90th percentiles 
were used: 
 
 
 
 
 
 
 
 
 
The inclusion of land surface temperature aids in 
the detection of potential damage. For VCI, TCI, 
and VHI, lower values indicate vegetation stress. 
Figure 4a shows the 14 day VCI valid on 31 
August 2011, with the same two major streaks 
apparent on the Iowa-Missouri border. VHI values 
in these damage streaks appear to be well below 

30. However, now there appears to be a smaller 
third streak to the west of the big streaks and to 
the east of the Missouri River. The radar estimate 
of hail shows a small streak of hail to the west of 
the primary tracks. The two primary tracks are well 
defined in the TCI product (Fig. 4b) but the third 
streak is not as well defined. When combining the 
two indices into the final index, all three damage 
streaks are very apparent (Fig. 4c).  
 
The VHI shows a healthier vegetation signal 
(green) west of the two main hail damage streaks 
in Nebraska and a stressed vegetation signal (red) 
in Iowa, to the east of the hail damage streaks. It 
is highly plausible that the reason behind these 
signals, despite a well uniform signal in Figure 3a 
is due to clouds and cloud shadows that were not 
completely eliminated using the MODIS cloud 
mask. Cloud and cloud shadow detection must be 
improved to ensure that they do not produce 
errors in composites of NDVI and LST.  In 
addition, this procedure would benefit from 
increased numbers of observations because this 
modified approach is using percentiles, greater 
numbers of observations will improve the results. 
In order to increase the samples for this product 
potential solutions include  increasing the number 
of satellites being using for the product (i.e. Terra-
MODIS, Suomi-NPP VIIRS) or increase the 
number days that are being included in the 
sampling by just Aqua-MODIS (i.e.14 days vs. 28 
days). Future work will examine which 
improvement yields the best results. 
 
4.3 Feature Detection/Extraction 
 
Image classification provides another potential 
methodology for detecting hail damage in 
vegetation. There are both supervised and 
unsupervised techniques that can be used to help 
detect features in imagery and/or extract those 
features. This study uses an unsupervised 
methodology to identify and extract areas of 
potential areas of damage.  

In order to detect these areas, both single day 
NDVI and LST single day is analyzed for 
anomalies. Using the same NDVI image from 19 
August 2011 (Fig 5a) as before, anomalies were 
calculated for each pixel in the image. The 
anomalies are calculated using a moving that is 
centered on each pixel. The anomalies are the 
difference between the center pixel and the 
median value of the remaining pixels in the moving 
box.  

𝑉𝐶𝐼 = 100 ∗  
𝑁𝐷𝑉𝐼𝑚𝑒𝑎𝑛 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛

 (1) 

𝑇𝐶𝐼 = 100 ∗  
𝐵𝑇𝑚𝑎𝑥 − 𝐵𝑇𝑚𝑒𝑎𝑛 

𝐵𝑇𝑚𝑎𝑥 − 𝐵𝑇𝑚𝑖𝑛

  (2) 

𝑉𝐻𝐼 = 0.5(𝑉𝐶𝐼) + 0.5(𝑇𝐶𝐼)     (3) 

𝑉𝐶𝐼 = 100 ∗  
𝑁𝐷𝑉𝐼50 − 𝑁𝐷𝑉𝐼10

𝑁𝐷𝑉𝐼90 − 𝑁𝐷𝑉𝐼10

  (4) 

𝑇𝐶𝐼 = 100 ∗  
𝐿𝑆𝑇90 − 𝐿𝑆𝑇50

𝐿𝑆𝑇90 − 𝐿𝑆𝑇10

  (5) 

𝑉𝐻𝐼 = 0.6(𝑉𝐶𝐼) + 0.4(𝑇𝐶𝐼)  (6) 



The NDVI anomaly image (Fig. 5c), like the other 
techniques, shows the two main hail damage 
streaks. The two main hail damage streaks appear 
to have NDVI values of -0.1 to -0.3 below the 
median. The rest of the image is noisy, but the 
noise is scattered rather uniformly, which could 
just be minor NDVI changes that result from 
differences in viewing angle or other slight 
differences. The same technique is applied to the 
land surface temperature scene. Within the 
damage streaks, LST anomalies of the streak are 
2 to 4 Kelvin warmer than the local background 
(Fig. 5d). There is also much less noise observed 
in the land surface temperature anomaly product 
outside the damage streaks. 

NDVI and LST anomalies can be combined in a 
classification approach to identify damaged pixels.  
For this work, Otsu’s method was selected (Otsu 
1975). The Otsu technique converts anomaly 
values to a grayscale image, and the technique 
sorts each pixel based on into two categories: 
background or anomaly. This results in a mask 
where each pixel is categorized as either 0 
(background) or 1 (anomaly). Figure 5e shows 
areas identified as anomalies in both the NDVI 
and LST. The two hail streaks are present but 
there are still several areas identified outside of 
the hail-damaged area. This noise can be 
attributed to urban areas, early harvest and issues 
resulting from clouds and cloud shadows. To limit 
returns to areas with possible hail damage, MESH 
was used to extract areas that experienced radar-
estimated hail greater than 2.54 cm (1 in.) (Fig. 
5f). By doing this, much of the noise is eliminated.  
Features outside of the primary streaks are also 
identified as possible damage areas. 

 
5. SUMMARY / FUTURE WORK 
 
This paper outlines the methodology being 
developed to automatically detect vegetation 
damage as a result of severe thunderstorms that 
bring large hail and damaging winds. Previous 
identification of these damaged areas had been 
manually done, in a non-efficient manner. The 
techniques that are explored here range from 
simple NDVI differencing to incorporating land 
surface temperature data with NDVI in the 
Vegetation Health Index, to feature detection and 
extraction. Each of these techniques have their 
strengths and weaknesses. Additional cases 
studies and analysis will be performed.   
 

From these additional case studies, each 
individual method will be evaluated tuned to 
provide its best performance. Each technique and 
its performance will then evaluated over the 
course of several previous growing seasons to 
simulate near-real time conditions. During these 
simulated near-time conditions, additional 
datasets, such as land cover and crop type will be 
integrated as well. 
 
Skill scores and validation will be compiled during 
season long tests. Skill scores will help determine 
the exact make-up of the final algorithm, prior to 
generation of a near-real time product. This 
product will be available to end users that will 
benefit from such product. The target end users 
are those who work to perform storm surveys and 
those who utilize the NOAA/NWS Damage 
Assessment Toolkit. 
 
6. REFERENCES 

Changnon, S. A., and N. A. Barron, 1971: 
Quantification of Crop-Hail Losses by Aerial 
Photography. J. Appl. Meteorol., 10, 86–96, 
doi:10.1175/1520-
0450(1971)010<0086:QOCHLB>2.0.CO;2. 
http://journals.ametsoc.org/doi/abs/10.1175/1
520-
0450%281971%29010%3C0086%3AQOCH
LB%3E2.0.CO%3B2 (Accessed November 
2, 2014). 

Cintineo, J. L., T. M. Smith, V. Lakshmanan, H. E. 
Brooks, and K. L. Ortega, 2012: An Objective 
High-Resolution Hail Climatology of the 
Contiguous United States. Weather 
Forecast., 27, 1235–1248, doi:10.1175/WAF-
D-11-00151.1. 
http://dx.doi.org/10.1175/WAF-D-11-00151.1. 

Gallo, K., T. Smith, K. Jungbluth, and P. 
Schumacher, 2012: Hail Swaths Observed 
from Satellite Data and Their Relation to 
Radar and Surface-Based Observations: A 
Case Study from Iowa in 2009. Weather 
Forecast., 27, 796–802, doi:10.1175/WAF-D-
11-00118.1. 
http://journals.ametsoc.org/doi/abs/10.1175/
WAF-D-11-00118.1 (Accessed December 
18, 2013). 

Molthan, A., J. Burks, K. McGrath, and F. 
LaFontaine, 2013: Multi-sensor examination 
of hail damage swaths for near real-time 



applications and assessment. J. Oper. 
Meteorol., 1, 144–156, 
doi:10.15191/nwajom.2013.0113. 
http://www.nwas.org/jom/abstracts/2013/201
3-JOM13/abstract.php (Accessed November 
2, 2014). 

Otsu, N., 1975: A threshold selection method from 
gray-level histograms. Automatica, 11, 23–
27. 

Parker, M. D., I. C. Ratcliffe, and G. M. Henebry, 
2005: The July 2003 Dakota Hailswaths: 
Creation, Characteristics, and Possible 
Impacts. Mon. Weather Rev., 133, 1241–
1260, doi:10.1175/MWR2914.1. 

http://journals.ametsoc.org/doi/abs/10.1175/
MWR2914.1 (Accessed October 28, 2014). 

Witt, A., M. D. Eilts, G. J. Stumpf, J. T. Johnson, 
E. D. W. Mitchell, and K. W. Thomas, 1998: 
An Enhanced Hail Detection Algorithm for 
the WSR-88D. Weather Forecast., 13, 286–
303, doi:10.1175/1520-
0434(1998)013<0286:AEHDAF>2.0.CO;2. 
http://journals.ametsoc.org/doi/abs/10.1175/1
520-
0434(1998)013<0286:AEHDAF>2.0.CO;2 
(Accessed January 10, 2015). 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

a) 

b)

) 

Figure 1. True color MODIS image from 25 August 2011 showing damage that was a 

result of damaging winds and large hail that occurred on 18 August 2011. Image 

reproduced from Molthan et al. (2013). 

Figure 2. The impact of severe thunderstorms during the overnight hours of the 18 August 2011 into the morning of 19 August 2011. (a) Storm 

Prediction Center storm reports for the 18 August 2011. (b) Maximum Expected Size of Hail valid 12z 18 August 2011 to 12z 19 August 2011. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

a) b) 

c) d) 

Figure 3. (a) 14 day NDVI composite valid for the 18 August 2011. (b) Single day NDVI image valid for 19 August 2011. (c) NDVI difference 

between single day image (b) and composite (a). (d) Box and whisker plot showing NDVI difference for various MESH size categories.  



 

  

Figure 4. (a) Vegetation Condition Index (VCI) valid for 31 August 2011 and identification of an additional hail damage streak. (b) 

Temperature Condition Index (TCI) valid for 31 August 2011. The third hail damage streak is not as visible. (c) Vegetation Health Index (VHI) 

valid for 31 August 2011. Third hail damage streak is faint but apparent. 
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b) a) 

c) d) 

e) f) 

Figure 5. (a) Single day NDVI image acquired from Aqua-MODIS on 19 August 2011. (b) Single day land surface 

temperature (LST) image acquired by Aqua-MODIS on 19 August 2011. (c) Median NDVI Anomaly of (a). (d) 

Median LST anomaly of (b). (e) Image shows the results of Otsu’s filter that is positive in both median NDVI image  

(c) and LST image (d). (f) Noise reduced by using MESH to show only areas that experienced hail. 


