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1.  INTRODUCTION 

 
    The state of California, nearly 800 miles long and 250 
miles wide, is divided into seven National Climatic Data 
Center Climate Divisions.  Based on areal-averaging 
techniques, month-to-month precipitation statistics have 
been compiled, division by division, since 1895 (and just 
recently, utilizing new and improved techniques, a 
recalculation completed of the entire division-by-division 
precipitation statistics, by year).  With such huge 
distances between the northern to southern borders, 
and the great topographical variation, it would seem 
inevitable that the character of rain year (July-June) 
relative precipitation anomalies may not be consistent, 
division-to-division, from one year to the next.  The 
degree and nature of these contrasts, and possible 
significant associations with phenomena such as the 
various ENSO phases (“El Nino”, “Neutral”, or “La Nina) 
should make for interesting study. 
    To this end, the existence and relative frequencies of 
California Climate Division rain year anomaly variation 
patterns (or “modes”) is investigated using K-Means 
Clustering Analysis integrated with the V-Fold Cross 
Validation Algorithm. Period of record is 1895-96 thru 
2013-14, some 119 seasons. 
    As applied to K-Means, the V-Fold Cross Validation 
Algorithm is an automated, iterative training sample type 
procedure that tends to optimize the number of resolved 
K clusters, depending on the choice of statistical 
distance metric and a specified percent distance 
improvement cutoff threshold, the latter measured by 
comparing, between successive n=K and n=K+1 cluster 
candidates, the percentage reduction in average training 
sample statistical distances from their respective cluster 
centroids.  
   The present study performs the cluster analysis on the 
119 seasons’ (normalized) data utilizing the Squared 
Euclidean distance metric combined with the (default) 5-
percent distance improvement threshold. Then, with the 
“optimal” number of clusters determined, and through 
referencing of two lists from the NOAA Climate 
Prediction Center online site which identify past ENSO 
episode phases back through 1895-96, a Bayesian 
statistical analysis is performed that addresses the 
following questions: given an impending ENSO phase 
type, what are the conditional (“posterior”) probabilities 
that each of the inter-divisional anomaly patterns will be 
realized for a given July-June rain season. Results are 
described and interpreted, with the Bayesian 
probabilities compared among episode types.          
 . ------------------------------------------------------------------------   
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2. THE K-MEANS AND V-FOLD CROSS  
VALIDATION METHODOLOGIES  

 
    The original K-means methodology was introduced by 
Hartigan (1975), and the basic methodology consists of 
assigning observations to a designated number of K 
clusters such that the multivariate means across the 
clusters are as different as possible. The differences 
can be measured in terms of Euclidean, Squared 
Euclidean, City-Block, and Chebychev statistical 
distances (Nisbet, et. al., 2009).  
    Applied to K-Means, the V-fold cross-validation 
scheme involves dividing the overall data sample into V 
“folds”, or randomly selected subsamples. K-means 
analyses are then successively applied to the 
observations belonging to the V-1 folds (training  
sample), and the results of the analyses are applied to 
the sample V that was not used in estimating the 
parameters (the testing sample) to assess the predictive 
validity or the average distances of the training sample 
arrays from their cluster center centroids.  The 
procedure is repeated for cluster sizes K+1. K+2, …, 
etc., until the incremental improvement in the average 
distances is less than some threshold, at which time the 
“optimal” cluster size is considered attained (NIsbet, et. 
al., 2009).  
   The STATISTICA Data Miner Clustering module was 
utilized to employ this technique.  Preliminary to the 
analyses, the Climate Division data were normalized, an 
internal automatic software feature, to reduce them to a 
common scale (between 0.0 and 1.0) and lessen the 
influence of outliers. Cluster results would be presented 
in pre-normalized data form.  
   Since the percent improvement threshold default 
setting (5 percent) can be changed, potentially resulting 
in a different “best” cluster size, an alternative graphical 
tool is available that can provide a different selection 
option. This tool, the Scree Plot, traces the actual 
(usually decreasing) mean training sample statistical 
distances over a range of increasing K’s. Inflection 
points on the Scree Plot can be interpreted as “natural” 
cutoff points, the “best” cluster size corresponding to the 
inflection point’s Kth position on the graph. The percent 
improvement cutoff K may differ (the iterations having 
stopped at K+1), so, alternatively, if one opts to choose 
the inflection point as the “right” K and it is different than 
the percent improvement threshold K, the program can 
be rerun, “forcing” the “optimal” cluster size and 
accompanying analysis and information to correspond 
to that at K, and K only.  If one is interested in a more 
exhaustive analysis, the forcing could be done at a 
Scree K-value that exhibits essentially zero change in 
mean training sample statistical distance from the 
preceding K-1 level. At even higher K levels, of course, 
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the statistical distance curve might trend back upward, 
reflecting over-fitting.  
  In this study, the 5 percent default distance 
improvement cutoff threshold was utilized along the 
Squared Euclidean distance metric (default: Euclidean), 
together with Scree Plot inspection. 
 
3.  BAYESIAN ANALYSIS 
     
  From Wikipedia, Bayesian inference is a method of 
which Bayes’ rule is used to update the probability 
estimate for a hypothesis as additional evidence is 
acquired.  In the context of this study, the initial 
hypothesis would be a probabilistic belief, or “Prior 
Probability”, that a given anomaly pattern (cluster) would 
occur unconditionally (historical percent frequency of the 
pattern), updated by a processing of evidence that 
relates the occurrence of the pattern to ENSO phase. 
The latter could be referred to as “accounting for 
evidence” and the result, or “impact”, multiplied by the 
“Prior Probability” would produce a “Posterior 
Probability” that incorporates this new conditional 
information (the ENSO phase) into a revised 
probabilistic belief that the given pattern will occur.  A 
desirable outcome would be a marked contrast in 
magnitudes between the Posterior and Prior 
probabilities which would indicate that knowledge about 
the conditional variable “matters”. The actual Bayesian 
expression will appear in a later section in which a case 
example is demonstrated on the California Climate 
Division precipitation data.           
 
4. THE DATA  

 

   The raw data were downloaded via an NCDC online 
link which had the newly modified complete history for 
the July 1895 to June 2014 period of interest.  Figure 1 
is a map of the California Climate Divisions. Their full 
titles, in numeric ordering are, 1.) “North Coast 
Drainage, 2.) “Sacramento Drainage”, 3.) “Northeast 
Interior Basins”, 4.) “Central Coast Drainage”, 5.) “San 
Joaquin Drainage”, 6.) “South Coast Drainage”, and 7.) 
“Southeast Desert Basin”.  In the results’ discussions 
below, the titles appear in shortened fashion, with the 
“Drainage” and “Basin” portions omitted.    
   Also, Figure 2 is a bar chart of the 119-year mean 
July-June precipitation figures, by division, and Figure 3 
a similar type bar chart of the standard deviation 
statistics, by division.  From Figure 2, there is a wide 
range of mean statistics, from nearly 50” in the North 
Coast division, to only 6” in the Southeast Desert. The 
standard deviation statistics in Figure 3 range from ~13” 
for the North Coast, to 2” in the Southeast Desert.   
   With such a wide division-to-division range in overall 
mean precipitation and variability across the State, it 
makes sense from an interpretation standpoint to 
express the individual cluster results, division-by-
division, in terms of relative or standardized deviations 
from the overall averages in Figure 2, based on the 
overall standard deviation statistics depicted in Figure 3.       
 
 

 

 

 

 

 

 

 

 

 

 

 

            
 

 

 

 

 
 
 
 
 
Figure 1 – Map of California Climate Divisions – from 
NCDC. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 – Mean Seasonal (July-June) Precipitation (In.)  
for NCDC California Climate Divisions (1895-96 thru 
2013-14 Period of Record  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 – Seasonal (July-June) Precipitation Series’  
Standard Deviations (In.) - NCDC California Climate 
Divisions (1895-96 thru 2013-14 Period of Record)  
 

 

 

 



5.  RESULTS  
 

     The K-Means/V-Fold algorithm produced six clusters, 
ranging in individual percent frequency from 23.5% to 
11.8% for a pair of patterns.   
 

5.1. – Scree Plot 
 
    Figure 4 is a Scree Plot of the iterative results. An 
inflection point is visible at K=6, matching the “Best” K 
determined by the 5% default improvement threshold 
setting - a reinforcing outcome.  The curve is also 
essentially flat from K=6 to K=7, further reinforcement 
that there are essentially six inter-divisional anomaly 
modes in existence for California July-June total 
precipitation.      
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 – Scree Plot of K-Means/V-Fold Cross 
Validation Algorithm Analysis of California Climate 
Divisions’ Seasonal (July-June Total) Precipitation 
Anomalies.  
 

5.2. – Standardized Mean Anomaly Charts for the 
Individual Patterns. 

 

     Figures 5 thru 10 present the division-by-division 
standardized mean anomalies for each of the six 
patterns, in descending order of importance.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

       Figure 5 – Standardized Mean Division-by-Division 
      Anomalies for the “Dry-Throughout” Pattern 
     (Mode #3). 
 

 

 

   Figure 5 shows the most frequently represented 
pattern (23.5% incidence), titled “Dry-Throughout”. The 
standardized division-to-division anomalies are quite 
uniform, about one standard deviation each below their 
respective climatologies.  The actual cluster means are 
annotated immediately below the edges of the bars, 
ranging from 36.67” for the “North Coast” to 4.07” for the 
“SE Deserts”. These can be compared with the overall 
averages depicted in Figure 2.   
    Ranking second is the “Dry North & Central, Near-
Normal South” Pattern (21.0% incidence, see Figure 6), 
exhibiting relatively pronounced mean standardized 
anomalies (~-0.75) for the northernmost three divisions 
(‘North Coast”, “Sacramento”, and “Northeast Interior”) 
slightly less negative ones for the middle two (~-0.50) 
divisions (“Central Coast and San Joaquin”), and near 
zero ones for the southernmost two (“South Coast” and 
“SE Deserts”) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Figure 6 – Standardized Mean Division-by-Division 
  Anomalies for the “Dry North & Central, Near Normal 
  South” Pattern – Mode #4. 
 
    Third most frequent is the “Slightly Wet to Slightly Dry 
Trend” Pattern (18.5% incidence, see Figure 7).  This 
shows a modest north to south “drift” from slightly wet 
conditions in the North to dry ones in the South.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7 – Standardized Mean Division-by-Division 
Anomalies for the “Slightly Wet to Slightly Dry Trend” 
Relative Anomaly Pattern – (Mode # 5). 
 

 

 

 

 



    In fourth place is the “Progressively More Wet 
Relative Anomalies, N to S” Pattern (13.5 % incidence, 
see Figure 8).  This depicts increasingly wetter 
character (in the relative sense) from north to south, 
particularly between the northernmost three divisions 
and the other four. Mean divisional precipitation for the 
North Coast (49.83”) is only slightly above overall 
climatology, while that for the South Coast (23.31”), and 
SE Deserts (8.15”) are each close to one standard 
deviation wetter than their overall norms.        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8 – Standardized Mean Division-by-Division 
Anomalies for the “Progressively More Wet Relative 
Anomalies, N to S” Pattern – Mode # 6. 
 
  Finally, tied for fifth place are the “Very Wet 
Throughout” and “Wet North & Central, Dry South” 
patterns (11.8% incidences each, see Figures 9 and 10, 
respectively).   
   Figure 9 exhibits exceptionally “wet” relative 
anomalies for all divisions, ranging from just under +1.5 
standard deviations for the North Coast to nearly +2.0 
for the South Coast; Figure 10 shows significantly 
positive ones for the northernmost five divisions but in a 
visibly sharp contrast, negative ones for the 
southernmost two, that for the SE Deserts approaching 
-0.5.     
   A few summary remarks can be made about the six 
patterns. First, Figures 5, 8 and 9, totaling 48.5% of the 
cases, have the same relative anomaly signs across all 
divisions; so, to generalize, it appears that in roughly 
half of the seasons, relative rainfall character across the 
State is the same (the figure goes up to about 70% if the 
results of Figure 6 are included, ignoring the slightly 
positive anomaly of the SE Deserts).   
   Also, there appears to be dichotomy of sorts in mean 
anomaly character (either in sign or magnitudes of the 
same sign) between the northernmost five and the 
southernmost two divisions, especially noticeable   
in Figures 6 and 10 (32.8% of the cases) and to a lesser 
extent in Figures 7 and 8 (another 32%), totaling about 
2/3rds of the cases.  This is probably due to the more 
southerly latitude of the South Coast and much of the 
SE Desert region, and the differing topography (e.g., the 
E/W oriented Transverse ranges, exhibiting an 
occasional “barrier” effect, along with the more 
southeasterly oriented coastline, etc.).    

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9 – Standardized Mean Division-by-Division 
Anomalies for the “Very Wet Throughout” Relative 
Anomalies” Pattern – Mode # 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10 – Standardized Mean Division-by-Division 
Anomalies for the “Wet North & Central, Dry South” 
Relative Anomalies Pattern – Mode #1. 
 
       5.3. – Pattern Probabilities Conditioned on El Nino, 
Neutral, or LaNina occurrences – Bayesian 
Determinations 
 
     While the percent frequencies of the above six 
patterns may be considered as probabilities that they 
may occur individually for a given July-June rain year, 
there are other climatic indicators that should provide 
additional, more refined probabilistic information on 
occurrence likelihoods.  ENSO phase (“El Nino, 
“Neutral”, or” La Nina”) is one indicator known to 
influence California rainfall patterns, so the next step is 
to investigate the possible modifying influences of these 
three episode types on the “baseline” Prior probabilities 
above of the six patterns.  This would be a conditional 
probability exercise, and the method of choice, already 
introduced, would be Bayesian Analysis.   
     First, the 119 seasons would have to be assigned 
ENSO episode classification.   Identification of ENSO 
types is a not completely objective process, different 
researchers having compiled different lists, with likely 
more uncertainty for those years further back.  For the 
purpose of this research, the lists utilized are those 
created by the NOAA Climate Prediction Center. The 
first covers the years 1877-2001, the second  

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 11 – Time Series of California Climate Division 
Precipitation, by Season and Division, with Cluster  
Assignments, Distance to Centroids, and ENSO 
designations (1895-96 through 2013-14 seasons).  

1950-2013. Those years that overlap 1950-2013 are 
given the assignments of the latter list.  From the 
TYPE$ column, 35 “El Nino’s”, 54 “Neutrals” and 30 “La 
Nina’s” are present.   
   Figure 11 is a table with the actual divisional 
precipitation data by season (lead years1895 to 2013), 
the mode (pattern) number assignments, statistical 
distances to the pattern centroids, and the ENSO 
designations.  The mode numbers are those six 
originally assigned (in unranked order of importance) by 
the software upon execution of the K-Means/V-Fold 
algorithm. They are included in the Figure 5 to10 
anomaly pattern graphs’ titles.  
   Next, the Bayesian conditional probabilities were 
calculated.  Since there were six patterns and three 
different ENSO phases, there would be18 separate 
calculations.  Figure 12 shows the Bayesian theorem 
along with the steps of a sample calculation, that for the 
conditional probability of Pattern #2 (“Very Wet 
Throughout” – see Figure 9) as associated with an 
imminent El Nino episode. 
    
  
         

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12 – Bayes Theorem (from Wikipedia) and a 
Sample Calculation of the Conditional Probability of the 
“Very Wet Throughout Pattern” being realized, given an 
Impending or ongoing El Nino. 
 
   From Figure 12, the top expression shows the general 
Bayes Theorem, that immediately below it the 
expression adapted to the variables of the sample 
exercise.  In the numerator on the right side of the 
equation, “P(A)” is the Prior Probability of the “Very Wet 
Throughout Pattern”, simply the original proportion of 
the 119 seasons that were so classified by the K-
Means/V-Fold algorithm (14/119 or .118, or 11.8%). 
P(B|A) is the proportion of “Very Wet Throughout” cases 
that were associated with El Nino episodes (in this case, 
10/14 or .586, a very high relative figure).  P(A) and 
P(B|A) are then multiplied together, yielding .084, this 
result also copied into the denominator, to be added to 
the product of the proportional incidence of El Ninos in 
the other non-“Very Wet Throughout Pattern” years  
(25/105 or .238) times the converse of the Prior 
Probability (.882), yielding +.210.  The final quotient 
(.084/(.084+.210) or 28.6% is the Posterior Probabilty, 
P(A|B): the likelihood that the “Very Wet Throughout 

 

 



Pattern” will be ultimately be realized, given an 
impending El Nino.  The Posterior Probability in this 
example is more than double than that of the Prior, 
indicating that an El Nino episode does “matter”, in this 
instance, increasing the odds noticeably that the “Very 
Wet Throughout Pattern” will be expressed for the July-
June rain season.             
   Table 1 lists the Posterior Probability results for all the 
18 combinations of 3 ENSO types (columns) and 6 
Patterns (rows). Some Posteriors of particular interest 
are shaded in red.       
 

 

 

 

 

 

 

 

 

  Table 1 – Posterior Probability Results for all 
combinations of ENSO Type vs. Pattern 
 

   To interpret, for example, the El Nino Posterior 
Probability column (third from the left), reading down, 
lists the conditional probabilities that each of the six 
patterns will be realized, given an El Nino episode. The 
28.6% figure, shaded red for the “Very Wet Throughout” 
Pattern (shown in Figure 9 and having already served 
as the Bayesian computation example above) is the 
pattern most likely to happen of the six.  As already 
discussed, this figure is much higher than the “Very Wet 
Throughout” pattern’s “baseline” 11.8% Prior shown in 
Column 6.  By the same token, if a La Nina is imminent, 
there is only a 3.3% chance that the “Very Wet 
Throughout” pattern will be expressed.  
   The most favored pattern for the La Nina (30.0% 
Posterior Probability) is the “Slightly Wet to Slightly Dry 
Trend”, shown in Figure 7; this is markedly higher than 
the pattern’s Prior (18.5%).  Also, La Nina is the most 
frequent ENSO type associated with the Wet North & 
Central, Dry South pattern (See Figure 10), its 
frequency (20.0%) noticeably higher than the pattern’s 
Prior (11.8%). Finally, there is a zero Posterior 
Probability associated with La Nina’s and the 
“Progressively More Wet Relative Anomalies, N to S” 
pattern (See Figure 8).  From these multiple results, it 
appears that La Nina’s are not generally associated with 
wet seasons in the South.  
   So, in conclusion, conditioning the occurrence 
probabilities of the six patterns on ENSO phases did 
provide more refined insights on their likelihoods. The 
range of their Priors was 11.8% to 23.5%, that for the 
Posteriors 0.0% to 30.0%.           
 
6.  SUMMARY 

   Utilizing the clustering tool K-Means, integrated with 
the V-fold cross validation algorithm, the existence and 
character of seasonal (July-June total) precipitation 

modes were explored, collectively, for the seven NCDC 
California climate divisions, accessing the 1895-96 to 
2013-14 period of record.  Inputs were normalized, 
areal-averaged total precipitation statistics season-by-
season, and division-by division. 
   Results resolved, unambiguously, six clusters 
 (also “patterns” or “modes”), characterizing a variety of 
anomaly configurations across divisions, occasionally 
on a combined North & Central vs. South basis.  
Individual pattern frequencies (“Prior probabilities) 
ranged from 11.8% to 23.5%.  Then, using Bayesian 
statistical methodology, conditional probability estimates 
(Posterior probabilities) were made of the occurrence 
likelihoods of the six patterns, given El Nino, Neutral, or 
La Nina episodes imminent or already in place.  In 
roughly half of the 18 Posterior Probability calculations, 
the Posterior magnitudes differed significantly from the 
Priors (see Table 1), indicative that El Nino type was a 
useful predictive indicator. These figures ranged from 
0.0% to 30.0%. 
   A combined Clustering/Bayesian analysis of this kind 
might prove similarly useful in other climatological-
related applications. 
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