
 

 

76.            CLUSTER ANALYSIS OF PREFERRED MONTH-TO-MONTH PRECIPITATION ANOMALY 

                     PATTERNS FOR LOS ANGLES/SAN DIEGO AND SAN FRANCISCO WITH BAYESIAN ANALYSES 
                     OF THEIR OCCURRENCE PROBABILITIES REALTIVE TO EL NINO, NEUTRAL, OR LA NINA 
                     EPISODES 
                                                                                                                          

   Charles J. Fisk *  
                  NAVAIR-Point Mugu, CA 

  
1. INTRODUCTION 

   
   Long-term monthly averages are a traditional means 
of characterizing climatological precipitation variability 
for given weather stations over the course of a rain year. 
Frequently based on the 30-year period of record, they 
serve as monthly precipitation ”normals” which are a 
basis for departure or “anomaly” calculations.   
   Such normals, of course, are only statistical 
idealizations, and actual individual years’ month-to-
month rainfall patterns invariably depart from mean 
climatology in some fashion, not necessarily randomly.  
Inherent tendencies may exist, for example, for 
occasional clustering of wet or dry anomalies over multi-
month sequences, or alternatively, gradual progressions 
from  wet (dry) to dry (wet) regimes, reflecting mean 
trough (ridge) to ridge (trough) propagations.  Perhaps 
also there may be distinctive ENSO phase (El Nino, 
Neutral, or La Nina) influences on the nature and 
frequency of the patterns.  Information on such 
tendencies, to whatever extent they are real, would 
represent a useful complement to the more conventional 
climatological characterizations.   
   To explore these possibilities, the following study 
investigates the existence and relative frequencies of 
month-to-month precipitation anomaly patterns for three 
California localities with lengthy periods of record:  the 
downtown stations of Los Angeles, San Diego, and San 
Francisco, CA.  The K-means clustering analysis 
methodology integrated with the V-Fold Cross Validation 
Algorithm is applied.  The latter, an automated software-
based training and testing sample type data mining 
procedure, tends to optimize the number of K clusters 
identified, subject to user selected preliminary settings 
in such elements as distance metric type, percent 
improvement cutoff threshold, seed, number of folds, 
and others.    
   In this study, the Squared Euclidean distance metric  
is utilized, the other settings left to their default values. 
The final selection of K clusters is based on Scree-plot 
inspections of the Squared Euclidean results, focusing 
on inflection points.  The nature and frequencies of the 
patterns are described, and then, utilizing Bayesian 
analyses, the conditional occurrence probabilities for 
each of the patterns by station, relative to El Nino, 
Neutral, and La Nina episodes are calculated.   
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   Periods of record examined for all three stations are 
the1877-78 thru 2013-14 (July-June) rain seasons.  
Given the winter rainfall maximum and summer 
drought character of California coastal stations, the 
calendar period selection includes October-November, 
December, January, February, March, and April-May.     
Also, given the close proximity of Los Angeles and San 
Diego (just 120 miles apart) and their similar rainfall 
climatologies, data for the two stations are merged into 
a single data base.  Thus, the Los Angeles/San Diego 
cluster analysis is 12-dimensional, the San Francisco 
one, six.  
      
2.   THE K-MEANS AND V-FOLD CROSS  
VALIDATION METHODOLOGIES  

 
   The original K-means methodology was introduced by 
Hartigan (1975), and the basic methodology consists of 
assigning observations to a designated number of K 
clusters such that the multivariate means across the 
clusters are as different as possible.  The differences 
can be measured in terms of Euclidean, Squared 
Euclidean, City-Block, and Chebychev statistical 
distances (Nisbet, et. al., 2009).  
   The V-fold cross-validation scheme, as applied to K-
means clustering involves dividing the overall data 
sample into V “folds”, or randomly selected subsamples. 
K-means analyses are then successively applied to the 
observations belonging to the V-1 folds (training 
sample), and the results of the analyses are applied to 
sample V that was not used in estimating the 
parameters (the testing sample) to assess the predictive 
validity or the average distances of the training sample 
arrays from their cluster center centroids.  The 
procedure is repeated for cluster sizes K+1. K+2, …, 
etc., until the incremental improvement in the average 
distances is less than some threshold, at which time the 
“optimal” cluster size is considered attained (Nisbet, et. 
al., 2009).  
   The STATISTICA Data Miner Clustering module was 
utilized to employ this technique.  Preliminary to the 
analyses, the period-to-period precipitation data were 
normalized, an internal automatic software feature, to 
reduce them to a common scale (between 0.0 and 1.0) 
and lessen the influence of outliers.  The various cluster 
results’ reports would, however, be presented  in the 
units of the pre-normalized data. 
   Since as already stated, the distance threshold and 
other settings can be changed, generation of the 
“optimal” number of clusters is not completely 
automatic.  Nonetheless, the V-fold cross-validation 
algorithm enhances the methodological objectivity of a 
clustering technique like K-means. And, the graphical 

mailto:charles.fisk@navy.mil


 

 

(scree-plot) option is available as an additional decision 
aid for deciding on the “ideal” number.     
 

 

3.  BAYESIAN ANALYSIS 
     
   From Wikipedia, Bayesian inference is a method of 

which Bayes’ rule is used to update the probability 
estimate for a hypothesis as additional evidence is 
acquired.  In the context of this study, the initial 
hypothesis would be a probabilistic belief, or “Prior 
Probability”, that a given anomaly pattern (cluster) would 
occur unconditionally (historical percent frequency of the 
pattern), updated by a processing of evidence that 
relates the occurrence of the pattern to ENSO phase. 
The latter could be referred to as “accounting for 
evidence” and the result, or “impact”, multiplied by the 
“Prior Probability” would produce a “Posterior 
Probability” that incorporates this new conditional 
information (the ENSO phase influence) into a revised 
probabilistic belief that the given pattern will result.  A 
desirable outcome would be a marked contrast in 
magnitudes between the Posterior and Prior 
probabilities which would indicate that knowledge about 
the conditional variable “matters”. The actual Bayesian 
expression will appear in a later section in which a case 
example is demonstrated on the Los Angeles/ San 
Diego precipitation data.           
 

 
4.  DATA AND PROCEDURES 
    
   Data for the three stations were secured from various 
online sites, including those of the National Climatic 
Data Center and National Weather Service.  The 
precipitation histories of each station include a number 
of station moves locally, but for the purposes of this 
analysis, the moves are assumed to have negligible 
influence on results’ outcomes.  

   Also, identification of ENSO episodes is a not 
completely objective or definitive process, different 
researchers have composed different lists, and there is 
likely more uncertainty with years further back than 
closer to the present.  For the purpose of this research, 
the lists utilized are those formulated by the NOAA 
Climate Prediction Center. The first covers the years 
1877-2001, the second 1950-2013. Those years that 
overlap (1950-2013) are given the designations 
assigned by the latter.  

   
 
 
 
 
 
 
 
 
 
 
 
 

5. RESULTS 
 
 
   5.1 -  Downtown Los Angeles and Downtown San 
Diego Combined Results 
         
   Figures 1 and 2 are bar graphs depicting mean overall 
Los Angeles and San Francisco precipitation figures, 
respectively, for the six calendar periods under 
consideration. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.  Mean Downtown Los Angeles Precipitation 

for October-November, December, January, February, 
March, and April-May calendar periods, 1877-78 to 
2013-14 Period of Record.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.  Mean Downtown San Diego Precipitation 

for October-November, December, January, February, 
March, and April-May calendar periods, 1877-78 to 
2013-14 Period of Record. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



 

 

       5.1.1 – Scree Plot                                                        
 
   Combined use of the Squared Euclidean Distance 
Metric and inspection of the associated Scree Plot 
results brought about “resolution” of four clusters for Los 
Angeles/San Diego.   From Figure 3, the magnitude of 
the curve at K=5 was scarcely less than that at K=4; 
hence a suitable stopping or “cutoff” point was at the 
latter.     
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 – Scree Plot of K-Means/V-Fold Cross 

Validation Algorithm Analysis of Los Angeles/San Diego 
October-November, December, January,  February, 
March, and April-May Precipitation Anomalies.  
 
   5.1.2 -  Downtown Los Angeles and Downtown San 
Diego Combined Results 
 

   Figures 4 thru 7 present the mean anomalies for each 
of the four patterns, in descending order of importance.  
Except for Figure 4a, the period-to-period anomalies for 
a given pattern are the deviations from  

the overall 137-year mean figures.  Annotations above 
or below the individual bars are the actual cluster means 
for the period concerned.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 Figure 4 – Mean Period-to-Period Anomalies Relative 

to Long-Term Overall Means for the “Wet January, 
Slightly Dry Others” Pattern. 
 

   The “Wet January, Slightly Dry Others” Pattern (Figure 
4) is by far the most frequent of the four, some 66 
seasons or 48.2% falling into this cluster.  In general, 

both stations show mean anomalies very much alike, 
period-to-period, a sensible result for two stations so 
close in distance, with a known similar rainfall climate.  
The Los Angeles departures (both positives and 
negatives) are a bit more pronounced on an individual 
basis than San Diego’s, this to be expected as Los 
Angeles is wetter climatologically.    Both the January 
mean anomalies for Los Angeles and San Diego are 
positive (wet), the only departures of that sign; the 
December negatives (dry) for each Los Angeles and 
San Diego are the most pronounced of that sign for any 
period.  
   Bearing in mind that the pattern in Figure 4 is an 
idealized one, and the anomaly configurations of the 66 
different seasons contained within the group would 
show individual variations, a few generalizations are 
possible.  First it appears that there may be a natural 
tendency over a given season for dry to wet 
successions between December and January, with 
essentially unremarkable, slightly negative ones for the 
other periods.  It is also true, however, that most 
individual anomalies relative to long-term means are 
likely negative because of the frequently positive skews 
of precipitation distributions, creating “inflated” mean 
figures (i.e., the means higher than the medians).  Since 
the clustering algorithm worked with the original data in 
normalized form, with eliminated or reduced 
skewnesses, conceivably it produced clusters with 
centroids that were more affiliated with medians rather 
than means.  If this is a reasonable assumption, aside 
from December and January in this case, it could be 
generalized that roughly half of the individual seasons 
associated with this mode for Los Angeles/San Diego 
were relatively non-descript anomaly-wise, period-to-
period.  
   Figure 4a depicts the period-to-period cluster 
anomalies relative to the long-term overall medians. 

Supporting the above argument to some extent, the 
anomalies seem to become less pronounced in  
absolute magnitude, save for those of January, and 
April-May.  Mean departures for all the12 periods are  
-0.306 in Figure 4 and +0.302 in Figure 4a, but 
excluding January and April-May, the comparative 
figures are -0.649 and -0.044, respectively.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 4a – Mean Period-to-Period Anomalies Relative 

to Long-Term Overall Medians for the “Wet January, 
Slightly Dry Others” Pattern. 
 
   Ranking second in relative frequency (n=31,  22.6% 
frequency), was the “Wet December, Dry January & 
February” pattern (See Figure 5).  This displays a clear 
drop-off from wet Decembers for both Los Angeles and 
San Diego to noticeably dry Januarys and Februarys for 
each.  Mean anomalies for the remaining periods, 
October-November, March, and April-May were slightly 
negative relative to their long-term means.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5 – Mean Period-to-Period Anomalies Relative 

to Long-Term Overall Means for the “Wet December, 
Dry January & February” Pattern. 
 
   Third in importance was the “Very Wet February & 
March pattern (n=25, 18.2 % frequency – see Figure 6),   
This displays a striking contrast in anomalies between 
February and March vs. the other four periods.  Except 
for January, which displays negative departures for both 
stations, the only other negative anomaly is seen for 
October-November for Los Angeles.  The 8.32” mean 
Los Angeles figure for February is 255% of average 
(3.26”), that for San Diego (4.29”) 216% of the norm 
(1.99”).  The corresponding mean cluster statistics for 
March are 4.81” in Los Angeles (189% of average) and  
3.10” for San Diego (186% of average). 
 

 
 
 
 
 
 
 

                
  
 
 
 
 
 
 
 
 
 
Figure 6 – Mean Period-to-Period Anomalies Relative 

to Long-Term Overall Means for the “Very Wet February 
& March” Pattern. 
 
   Finally, in fourth place was the “Very Wet October-
December, Dry January-March pattern (n=15, 11.0% 
frequency-  see Figure 7).  This seems to be an 
expanded version, forward and backward, of the “Wet 
December, Dry January & February pattern” (see Figure 
5), the “Wet” in this case extending into the earlier 
portion of the rain season (October-November), the 
“Dry” into the later part of the season (March).  Also, in 
contrast with Figure 5, the anomalies for April-May are   
both positive for Los Angeles and San Diego. 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7 – Mean Period-to-Period Anomalies Relative 

to Long-Term Overall Means for the “Very Wet October-
December, Dry January-March” Pattern. 
 

       5.1.3. – Pattern Probabilities Conditioned on El 
Nino, Neutral, or La Nina occurrences – Bayesian 
Determinations 

 

   While the percent frequencies of the above four 
patterns may be considered as probabilities that they 
may occur individually for a given rain year, there are 
other climatic indicators that should provide additional, 

 

 

 

 



 

 

more refined probabilistic information on occurrence 
likelihoods.  ENSO phase (“El Nino, “Neutral”, or” La 
Nina”) is one indicator known to influence California 
rainfall patterns, so the next step was to investigate the 
possible modifying influences of these three episode 
types on the “baseline” prior probabilities above of the 
four patterns.  This was a conditional probability 
exercise, and the method of choice, already introduced, 
would be Bayesian Analysis.   

   After ENSO episode classification for each of the 137 
seasons, the Bayesian conditional probabilities were 
calculated.  Since there were four patterns and three 
different ENSO phases, 12 separate calculations were 
performed.  Figure 8 shows the Bayesian theorem along 
with the steps of a sample computation, that for the 
probability of the “Very Wet February & March” pattern 
(see Figure 6) given an El Nino episode. 

    

  

         

 

 

 

 

 

 

 

 

 

 

 

Figure 8 – Bayes Theorem (from Wikipedia) and a 

Sample Calculation of the Conditional Probability of the 
“Very Wet February & March” Pattern for Los 
Angeles/San Diego being realized, given an El Nino 
episode. 

 

   From Figure 8, the top expression shows the general 
Bayes Theorem, that immediately below the expression 
adapted to the variables of the sample exercise.  In the 
numerator on the right side of the equation, “P(A)” is the 
Prior Probability of the “Very Wet February & March” 
pattern, simply the original proportion of the137 seasons 
that were so classified by the K-Means/V-Fold algorithm 
(25/137 or .182, or 18.2%).  P(B|A) is the proportion of 
“Very Wet February & March” cases that were 
associated with El Nino episodes (in this case, 12/25 or 
.480, a high relative figure).  P(A) and P(B|A) are then 
multiplied together, yielding .0876, this result also 
copied into the denominator, to be added to the product 
of the proportional incidence of El Nino’s in the other 
non-“Very Wet February & March” pattern cases  
(28/112 or .250) times the converse of the Prior 
Probability (.818).  This yields .0876+.2044, the final 
quotient (.0876/(.0876+.2044) giving 30.0% as the 
Posterior Probabilty, P(A|B): the likelihood that the “Very 
Wet February & March” pattern will be realized, given an 
impending El Nino.  The Posterior Probability in this 
example is nearly 2/3rds higher than that of the Prior, 
indicating that evidence of an El Nino episode does 
“matter”, in this instance, increasing the odds 

significantly that the “Very Wet February & March” 
pattern” will be expressed for the given rain season.             

   Table 1 lists the Posterior Probability results for the 12 
combinations of 3 ENSO types (columns) and 4 
Patterns (rows).        

 

 
 

  Table 1 – Posterior Probability Results for all 

combinations of ENSO Type vs. Los Angeles/San Diego   
Pattern. 

 

   To interpret, for example, the El Nino Posterior 
Probability column (third from the left), reading down, 
lists the conditional probabilities that each of the four 
patterns will happen, given an El Nino episode.  The 
30.0% figure for the “Very Wet February & March”  
pattern, just calculated, is seen in row three, but the 
most frequent pattern for the El Nino’s (indeed for the 
Neutrals and La Nina’s as well) is the “Wet January, 
Slightly Dry Others” pattern with a 45.0 % Posterior.  For 
the La Nina’s, the “Wet January, Slightly Dry Others” 
pattern has a 47.2% Posterior, but not far behind is the 
38.2% figure for the “Wet December, Dry January & 
February” mode.  For the Neutrals, aside from the 

50.8 % Posterior for the “Wet January, Slightly Dry 
Others” pattern, there are no marked Posterior versus 
Prior contrasts for the other three modes.  

   So in summary, comparing the El Nino and La Nina 
results in Table 1, most affected seasons in the Los 
Angeles and San Diego areas would seem to exhibit 
non-descript anomaly patterns period-to-period.  But, a 
sizeable minority of secondary modes also exhibit 
marked and contrasting configurations, in particular an 
El Nino tendency to gravitate around heavy rains in the 
late season (February & March), and a La Nina 
proclivity for wet conditions relatively early in the season 
(December) followed by dry ones over January and 
February.            
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



 

 

 
 
   5.2 -  Downtown San Francisco Results 

 

   Figure 9 shows bar graphs depicting mean overall 
San Francisco precipitation figures, respectively, for the 
six calendar periods under consideration.  Mean 
seasonal San Francisco precipitation is significantly 
higher than that for Los Angeles and San Diego, about 
40% so more than Los Angles and more than double 
that of San Diego. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9.  Mean Downtown San Francisco Precipitation 

for October-November, December, January, February, 
March, and April-May calendar periods, 1877-78 to 
2013-14 Period of Record.  
 

       5.2.1 – Scree Plot  
 
   Combined use of the Squared Euclidean Distance 
Metric and inspection of the associated Scree Plot 
results brought about “resolution” of six clusters for San 
Francisco.  From Figure 10, the magnitude of the curve 
at K=7 was about the same as for K=6, the “cutoff” point 
thus being at K=6.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 – Scree Plot of K-Means/V-Fold Cross 

Validation Algorithm Analysis of San Francisco October-
November, December, January,  February, March, and 
April-May Precipitation Anomalies.  

 

 

 

   5.2.2 -  Downtown San Francisco Results 

 

   Figures 11 thru 16 depict the mean anomalies for each 
of the six patterns, like Los Angeles/San Diego, in 
descending order of importance.  Also, in analogous 
fashion, except for Figure 11a, the period-to-period 
anomalies for a given pattern are the deviations from 
the overall 137-year mean statistics.  As previously, 
annotations above or below the individual bars for all the 
charts are the actual cluster means for the period 
concerned. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 – Mean Period-to-Period Anomalies Relative 

to Long-Term Overall Means for the “Consistently Below 
Average” Pattern.   

 

   The “Consistently Below Average” pattern (Figure 11) 
is easily the most frequent of the six, some 56 seasons 
or 40.9% affiliated with this group.  Like that for Los 
Angeles/San Diego, the configuration of the bars likely 
reflects the clustering algorithm’s data normalization, 
and to investigate this possibility once again, Figure 11a 
shows the departures relative to the medians.   

   Similar to those in its counterpart chart of Figure 4a, 
most of the individual bars in Figure 11a are positioned 
nearer to zero, the February and April-May ones, 
formerly negative,  now  positive.  Mean anomaly 
magnitude for the six periods in Figure 11 is -0.922, that 
in Figure 11a, just -0.297.  

   Thus, similar to that for Los Angeles/San Diego, the 
generalization could be made, allowing for intra-cluster 
individual season variation, that a sizeable proportion of 
seasons for San Francisco (41%) display relatively 
unexceptional period-to-period anomaly configurations.    

 

 

 

 

 

 

 

 

 

 

 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 11a – Mean Period-to-Period Anomalies Relative 

to Long-Term Overall Medians for the “Consistently 
Below Average” Pattern. 
 

   Second in importance was the “Wet December, Dry 
February and March” pattern (n=23, frequency: 16.8% - 
See Figure 12).  This displays a transition from an 
exceptionally wet December regime (mean anomaly 
approaching +5”, to a relatively dry pattern covering 
both February and March, each about 1” below average. 
Physically, this is suggestive of a mean trough to ridge 
“propagation” between the December and February-
March.  Such early to later seasonal transitions are also 
displayed in similar but not identical form in Figures 5 
and 7 for Los Angeles/San Diego.   
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12 - Mean Period-to-Period Anomalies Relative 

to Long-Term Overall Means for the “Very Wet 
December, Dry February & March” Pattern.   
 

   Ranking third was the “Very Wet March” pattern 
(n=22, frequency 16.1% - See Figure 13), the most 
notable feature of the graph being the highly positive 
mean anomaly for March (approaching +4”).  The 
anomalies for the contiguous periods October-
November, December, and January are all negative, 
those for February, March, and April-May all positive. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13- Mean Period-to-Period Anomalies Relative 

to Long-Term Overall Means for the “Very Wet March” 
Pattern.   
 

   In fourth place was the “Very Wet October-
November/Dry February” pattern (n=20, frequency 
14.6% - See Figure 14).  This exhibits a very 
pronounced positive anomaly for October-November 
(departure in excess of 4”) followed by a noticeably 
negative one (approaching -2”) in February, suggestive 
physically of another kind of early-season to later 
season transition from a predominant trough regime to a 
more ridge-influenced one.   Compared to Figure 12, 
however, Figure 14’s is less “rapid”, three periods 
separating October-November and February compared 
to two for the former (i.e., December vs. February).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14 - Mean Period-to-Period Anomalies Relative 

to Long-Term Overall Means for the “Very Wet 
October/November, Dry February” Pattern.   
 
 
 
 
 

 
 

 

 

 

 



 

 

   Ranking fifth was the “Wet January & February” 
pattern (n=14, frequency 10.4% - see Figure 15). This is 
the only San Francisco pattern with significant positive 
anomalies shown for contiguous periods; such was a 
routine feature for Los Angeles/San Diego.  Mean 
positive anomaly for January approaches 5 ½”, that for 
February nearly 4”. The other four periods show mostly 
modestly negative departures. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15 - Mean Period-to-Period Anomalies Relative 

to Long-Term Overall Means for the “Very Wet 
October/November, Dry February” Pattern.   
 

   Ranking last was the “Very Wet April-May” pattern 
(n=2, frequency: 1.5% - see Figure 16).  With a sample 
size of just 2, it’s obviously not very significant in 
climatological scheme of things.  Its major feature is the 
very large positive mean anomaly shown for April-May, 
approaching +7”, and reflecting an average precipitation 
amount in excess of 400% of average.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16 - Mean Period-to-Period Anomalies Relative 

to Long-Term Overall Means for the “Very Wet April-
May” Pattern.   
 
 
 

       

 5.2.3. – Pattern Probabilities Conditioned on El Nino, 
Neutral, or La Nina occurrences – Bayesian 
Determinations for San Francisco 
 
     
 
 
 
 
 
 
 
 

  Table 2 – Posterior Probability Results for all 

combinations of ENSO Types vs. San Francisco 
Patterns 
 
   Repeating the Bayesian Analyses as performed for 
Los Angeles/San Diego, Table 2 shows the Posterior 
Probability results for San Francisco. 

   Comparing the Posterior Probability figures, the 
“Consistently Below Average” pattern has the highest 
posterior figures for El Nino (45.0%), Neutral (39.7%), 
and La Nina (38.2%), and in contrast with Los 
Angeles/San Diego (See Table 1), there are no close 
second place competitors across any of the three 
episode types.  For the El Nino’s, three patterns tie for 
second place (15.0 % posteriors each), and for the La 
Nina’s, two tie for second (20.6% posteriors each).  

   The most conspicuous contrasts between El Nino and 
La Nina posteriors are seen for the “Very Wet January & 
February” and “Very Wet October-November, Dry 
February” patterns.  In the former, the El Nino figure 
exceeds that of the La Nina 15.0% to 5.9%, and in the 
latter the La Nina posterior exceeds that of El Nino 
20.6% to 10.0%.  These are not nearly as distinct as 
those analogous comparisons shown in Table 1.  For 
example, the posterior for the “Very Wet February-
March” pattern had a 30.0% to 2.9% contrast between 
El Nino and La Nina, that for the “Wet December, Dry 
January & February pattern” a 38.2% to12.5% disparity 
between La Nina and El Nino.    

   In sum, ENSO type does not seem to affect the San 
Francisco patterns’ Bayesian posteriors like it does the 
Los Angeles/San Diego ones.  This is likely due to the 
more northerly location of San Francisco and its greater 
susceptibility to precipitation producing influences other 
than those related to ENSO phase. 

 
  6. SUMMARY 

       
   Utilizing the K-Means/V-Fold Cross-Validation 
clustering methodology, the foregoing investigated the 
existence and relative frequencies of month-to-month 
precipitation anomaly modes for the  Downtown Los 
Angeles and Downtown San Diego stations (analyzed 
as a unit), and that for Downtown San Francisco, each 
covering the 1877-78 through 2013-14 periods of 
record.  The Squared Euclidean distance metric 
combined with Scree Plot inspections were utilized to 
generate and decide upon the number of clusters (or 
“patterns”).  The calendar units of analysis were 

 

 

 



 

 

October-November, December, January, February, 
March, and April-May. 
    Overall, four such patterns were resolved for Los 
Angeles/San Diego, six for San Francisco.  Primary 
modes for each (48% and 41% incidences, respectively) 
were those that displayed, with a few exceptions, very 
modest mean precipitation deviations period-to-period, 
relative to overall climatology.  This was interpreted to 
mean that the most frequent anomaly patterns  
expected in these cases should be relatively 
unexceptional ones, period-to-period (the ultimate 
“unexceptional” pattern, of course, would be period-to-
period precipitation totals that matched climatology 
exactly).  Some of the lesser, secondary  patterns  
included “standalone”, single period highly positive (wet) 
anomalies, and progressions that suggested trough 
(wet) to ridge (dry) transitions over differing time scales.  
Los Angeles/San Diego seemed to be more prone to 
significant anomaly patterns that extended across 
contiguous periods.      
    Following the pattern resolutions and evaluations, 
Bayesian analyses were performed to investigate the 
influences of ENSO phases (“El Nino, “Neutral”, and “La 
Nina”) on occurrence likelihoods (“Posterior 
Probabilities”).  Strong contrasts in posterior magnitudes 
for El Nino’s versus La Nina’s were seen for two of the 
four Los Angeles/San Diego patterns, but no similarly 
pronounced differences were noted for any of San 
Francisco’s six modes.  
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