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1.   INTRODUCTION 
 

Developing Model Output Statistics (MOS) 
(Glahn & Lowry 1972) guidance for rare events 
such as freezing precipitation often requires a long 
training sample in order to capture enough cases 
to obtain stable estimates of the regression pa-
rameters.  Unfortunately, long samples of training 
data from a stable model often are not available, 
which can make forecasting rare events a chal-
lenge.  Recently, about 29 years of reforecast data 
from the Global Ensemble Forecast System 
(GEFS) has become available (Hamill et al. 2013).  
The availability of this dataset provides an oppor-
tunity to assess the impact of sample size on the 
accuracy and skill of MOS guidance, particularly 
for rare events.   

 
This paper describes a sample size sensitivity 

experiment for MOS precipitation type.  Equations 
for the conditional probability of freezing, frozen, 
and liquid precipitation were developed from 
GEFS reforecasts with varying lengths of training 
data.  A k-fold cross-validation was performed to 
assess the effect of sample length on the skill of 
the MOS guidance.   

 
2.   METHODOLOGY 
 
2.1  Observations 
 

MOS precipitation type guidance is developed 
from present weather observations at METAR 
sites (Allen & Erickson 2001a,b).  Observations 
were examined for the period 1985-2013 which 
corresponds to the ~29-yr sample of GEFS refore-
cast data available for this test.  In order to be 
used in the test, a site must report precipitation 
and must have had at least 50% of possible re-
ports each year during the period.  This limits the 
list of candidate stations to only those that are 
well-established and report present weather relia-

bly, and also insures a consistent set of stations is 
available for any period one may wish to use for 
cross-validation.  A set of 551 stations was re-
tained, comprised of 506 CONUS stations, 26 
Alaska stations, and 19 stations in Canada.   
 

Present weather observations valid at 0000, 
0600, 1200, and 1800 UTC were classified into 
one of three mutually exclusive categories: freez-
ing, frozen, or liquid.  A separate “null” category 
was used for cases when no precipitation of any 
type was reported or if the type of precipitation 
could not be determined.  Thus, only precipitation 
cases of discernable type comprised the develop-
mental sample.  Table 1 lists the definitions of 
each MOS precipitation type category.  As with 
previous MOS precipitation type developments, 
observations of sleet were classified as freezing 
and any mixture of liquid precipitation with snow 
was classified as liquid (Allen & Erickson 2001a,b; 
Shafer 2010; Shafer 2014).  Freezing events are 
rare, comprising only 1.5% of precipitation cases 
over the CONUS and 0.5% of precipitation cases 
over Alaska.        
 
2.2  Predictors 
 
 Predictor data for this sample size experiment 
was comprised of GEFS mean forecast fields ar-
chived on a 1-degree latitude / 1-degree longitude 
grid and interpolated to each of the 551 METAR 
stations.  Several GEFS mean-based predictors 
were offered to the regression analysis.  These 
include various thicknesses, temperature and wet 
bulb temperature at various levels, temperature 
advection, and a predictor based on the vertical 
profile of wet-bulb temperature.  Geoclimatic in-
formation was incorporated based on logit trans-
forms and gridded conditional relative frequencies 
of freezing, frozen, and liquid precipitation as pre-
dictors.  As part of the most recent GFS MOS pre-
cipitation type development (Shafer 2010), logit 
50% values were calculated at each station for 
several parameters that are good discriminators of 
precipitation type.  These include 850-hPa tem-
perature, 1000-850 hPa thickness, 1000-500 hPa 
thickness, and freezing level.  The 50% values 
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were subtracted from the GEFS mean forecast for 
each parameter to obtain a new “transformed” 
predictor that helps to capture localized effects 
that may not be well-resolved on the model scale.  
This allows data for all stations to be pooled to-
gether into one or more large regions for devel-
opment, while still retaining station specificity in 
the equations.  The ability to combine data into 
larger samples is critical when forecasting rare 
events such as freezing precipitation, since the 
number of cases in the sample is often limited.  
Since the equations were developed with GEFS 
mean-based predictors, any effects of the ensem-
ble spread were not examined nor accounted for 
in the sample length tests presented here.  
 
2.3  Regression analysis 
 
  Equations for the conditional probability of 
freezing, frozen, and liquid precipitation were de-
veloped for the 0000 UTC cycle for projections 
every 6 hours through 192 hours in advance.  
Equations were developed only for the cool sea-
son, defined as 1 September - 31 May.  As with 
previous developments, multiple linear regression 
was used to derive the equations.  This method, 
known as “Regression Estimation of Event Proba-
bilities” (REEP), relates the binary predictands to a 
linear combination of predictor variables using a 
stepwise selection procedure (Miller 1964).  The 
equations for each predictand (freezing, frozen, 
and liquid) were developed simultaneously; that is, 
the equations contained the same predictor varia-
bles but have different regression coefficients.  
The probability forecasts were normalized in a 
post-processing step to insure they are con-
strained to the 0 to 1 range and sum to 100%.  
 
2.4  Sample size experiments  
 
 To evaluate the effect of sample size on the 
accuracy and skill of the GEFS MOS precipitation 
type guidance, equations were developed with 
varying lengths of training data as follows: 
 

1) Test equations were developed with 1, 2, 
3, 5, 10, and 15 years of daily forecasts, 
as well as sampling every third day from a 
15-yr period (here one “year” is a 9-month 
cool season).  The purpose of this latter 
test is to assess whether any benefit is re-
alized from sampling over a longer period 
compared to using the most recent 
5 years of data.  One cool season was 
withheld as an independent sample. 

2) Forecasts were generated for the withheld 
season using the equations produced 
from the sample length tests in (1). 

3) A k-fold cross-validation was performed by 
repeating (1) and (2) over a period of 
12 cool seasons, each time withholding a 
different season for testing.  This proce-
dure generated 12 seasons of independ-
ent forecasts for each sample length test.  

 
For any given length of training data, the re-

sults can be influenced by how one chooses to 
develop the equations, be it by taking a single-
station approach or by pooling stations into one or 
more regions.  Pooling data into regions is often 
necessary when the event being forecast does not 
occur frequently enough at individual stations to 
obtain stable single-station equations, particularly 
for short training periods.  To examine the sensitiv-
ity of the results to the development method used, 
the following additional tests were performed: 
 

4) The test equations in (1) were developed 
by combining all stations into one large 
region – known as a “generalized operator 
equation (GOE)”.  This approach is ex-
pected to be most beneficial for the short-
er sample length tests (i.e., 1 and 2 
years), where the number of freezing and 
frozen cases in the sample is more limited.    

5) The test equations in (1) were developed 
by grouping stations into 10 geographic 
regions over the CONUS and Alaska.  The 
regions were chosen based on climatolog-
ical and geographic similarity, and are the 
same as those used for MOS snowfall 
(see Cosgrove & Sfanos 2004).     

6) Finally, for training periods of 5, 10, and 
15 years, the test equations in (1) were 
developed with a single-station approach.  
For this test, the sample was restricted to 
stations that contained 5 or more cases of 
freezing precipitation and 10 or more cas-
es of frozen precipitation.   

 
3.   RESULTS 
 
3.1  Sample length comparison 
 

The score most often used to assess the ac-
curacy of multi-category probability forecasts is the 
Brier p-score (Brier 1950), which is essentially the 
mean squared error for the probability forecasts 
summed over each of the nominal binary events to 
which the probabilities relate (Wilks 2006).  P-
scores were calculated for the three-category 
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GEFS MOS guidance and for a reference clima-
tology forecast.  Here, climatology is simply the 
conditional relative frequency of freezing, frozen, 
and liquid precipitation for a 12-h period centered 
on the forecast valid times of 0000, 0600, 1200, 
and 1800 UTC.  Scores were calculated for the 
aggregate of all 12 independent test seasons (see 
Section 2.4).    Figure 1 shows the p-score percent 
improvement over climatology for the 3-category 
GEFS MOS precipitation type guidance.  These 
results are for generalized operator (GO) equa-
tions.  Curves are plotted for the 1, 2, 3, 5, 10, and 
15-yr sample length tests.  Only minimal differ-
ences in skill are seen for projections through 
72 hours (Fig. 1a).  For projections beyond 
72 hours, the 1-yr sample length test performs the 
worst while sample lengths of 2 years or greater 
show similar skill.   More sizeable differences in 
skill can be seen for projections beyond 144 hours 
(Fig. 1b).  In the extended range projections, sam-
ple lengths of two years or longer have a clear 
advantage with the 15-yr test generally performing 
the best for most projections.  Still, considerable 
clustering is present in the results, and for many 
projections it appears there is very little to be 
gained for training periods longer than 5 years. 
 
3.2  Generalized operator vs. regional 

 
A comparison of skill scores for GO and re-

gional developments are shown in Figure 2 for the 
5-yr and 15-yr sample tests.  Overall, the regional 
development has better skill than GO, with differ-
ences of 3-5% seen for the early projections 
(Fig. 2a) and 2-3% in the extended range 
(Fig. 2b).  If one wishes to make forecasts at sta-
tions then a regional development is usually the 
better choice as the equations will be more locally-
tuned.  However, for making gridded forecasts a 
GO approach alleviates the problem of boundary 
discontinuities between regions, and would pro-
duce forecasts that are more spatially consistent.  
Also plotted in Figure 2 are skill scores when 
sampling every third day from a 15-yr period (the 
equivalent of 5 years of training data).  A slight 
advantage is seen in the extended range (Fig. 2b) 
for this test as compared to the 5-yr daily test, alt-
hough the difference is very small. 

 
3.3  Single-station tests 

 
A comparison of results for single-station (SS), 

regional, and GO developments is shown in     
Figure 3 for training periods of 5 years (Fig. 3a) 
and 15 years (Fig. 3b).  Note that stations which 
did not contain sufficient cases of freezing or fro-

zen precipitation to produce an equation are not 
included in the single-station verification.   The 
scores for regional and GO developments do not 
vary significantly with training sample length, while 
the scores for SS equations are much more sensi-
tive to sample size.  For the 5-yr test, SS has a 
slight advantage through 36 hours then perfor-
mance degrades quickly and becomes even worse 
than GO after about 108 hours.  The rapid degra-
dation in performance for the SS equations 
(Fig. 3a) is likely due to over-fitting, as a 5-yr train-
ing sample for one station is insufficient to capture 
enough freezing and frozen cases to produce a 
stable equation.  However, for a training period of 
15 years (Fig. 3b), performance for the SS equa-
tions is significantly improved, with skill scores 
superior to regional equations through around 138 
hours and about the same through the extended 
range.   If a single-station approach is desired, the 
results in Figure 3 suggest that a significant bene-
fit can be gained from having a long sample of 
retrospective forecasts from a stable model. 
 
3.4  Reliability 

 
Aside from forecast accuracy, it is important 

that probability forecasts be well-calibrated and 
reliable.  Forecasts are deemed reliable when the 
average forecast probability and observed relative 
frequency of the event are roughly the same in 
each probability bin.  A comparison of reliability for 
the 5-yr and 15-yr sample tests is shown in Figure 
4 for the 72-h projection.  Reliability is generally 
good for all three categories, with perhaps a slight 
over-confidence in the lower probability bins and 
under-confidence in the higher bins.  Since more 
freezing events can be captured in a longer train-
ing sample, reliability for that category is slightly 
better for the 15-yr test (Fig. 4b) than for the 5-yr 
test (Fig. 4a).  Reliability for the other sample 
length tests (not shown) are very similar. 
           
4.   SUMMARY & CONCLUSIONS 
 

Equations for the conditional probability of 
freezing, frozen, and liquid precipitation types 
were developed from GEFS reforecasts for train-
ing periods of 1, 2, 3, 5, 10, and 15 years and 
tested using a k-fold cross-validation procedure.  
The sensitivity of the results to the development 
method (i.e. regional, single-station) also was ex-
amined.  For generalized operator and regional 
equations, the results from cross-validation sug-
gest that a training period of no less than 2 years 
and no more than 5 years is sufficient to develop 
skillful and reliable MOS guidance for precipitation 



 4 

type.  Little difference was found for training peri-
ods of 5 years (daily) and sampling every third day 
from a 15-yr period.  In general, a regional devel-
opment was found to outperform generalized op-
erator for training periods of 5 years or longer.  If a 
single-station approach is desired, the results 
suggest that a significant benefit can be gained 
from having a long sample of retrospective fore-
casts from a stable model.   
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Table 1.  Definitions of MOS precipitation type categories. 
 

Freezing 
 

Frozen 
 

 
Liquid 

 

 
Freezing rain (FZRA) 

 
Freezing drizzle (FZDZ) 

 
Ice pellets (PL) 

 
Any precipitation in 

combination with any of 
the above. 

 
 

 
Snow (SN) 

 
Snow showers (SHSN) 

 
Snow grains (SG) 

 
 
 
 
 
 
 
 
 

 
Drizzle (DZ) 

 
Rain/drizzle (RADZ) 

 
Rain (RA) 

 
Rain shower (SHRA) 

 
Thunderstorm (TSRA) 

 
Any mixture of liquid 

precipitation with snow. 
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Figure 1.  P-score percent improvement over climatology for 3-category GEFS MOS precipitation type 
guidance developed with varying lengths of training data.  Results for all projections (a) and extended-
range projections (b) are shown.   

a 

b 
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Figure 2.  P-score percent improvement over climatology for 3-category GEFS MOS precipitation type 
guidance.  Results for generalized operator and regional equations are shown for all projections (a) and 
extended-range projections (b). 

a 

b 
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Figure 3.  P-score percent improvement over climatology for 3-category GEFS MOS precipitation type 
guidance.  Results for generalized operator, regional, and single-station equations are shown for sample 
sizes of (a) 5 years and (b) 15 years. 

a 

b 
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Figure 4.  Reliability diagrams for 3-category GEFS MOS precipitation type guidance.  Results for the  
72-h projection are shown for (a) the 5-yr daily and (b) 15-yr daily tests. 

a a 

b 


