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1. INTRODUCTION 

Strategic air traffic flow management (TFM) 
addresses predictions of significant capacity-
demand imbalances four or more hours in the 
future, with the goal of mitigating anticipated delays 
while maintaining safe operations. In the U.S. 
National Airspace System (NAS), the current 
process of formulating a mitigation plan relies 
heavily on decision makers mentally translating 
weather forecasts into spatiotemporal impact on air 
traffic control (ATC) resources, i.e. ATC sectors and 
airports. In addition, at the strategic look-ahead 
horizon, the weather phenomena and their impacts 
are often subject to significant uncertainty, which 
may influence the design of traffic management 
plans. As such, impact forecasting in the TFM 
decision making process often suffers from 
experience-based subjectivity.  

To address this shortfall, quantitative assessment 
of ATC impact from weather forecast variables is a 
vital step. Several methods have been proposed 
that estimate capacity loss of airspace and airports 
from numerical weather forecast variables, such as 
Tien14, Dhal13, Dhal14, Xue11, Steiner09, 
Song09.  

The scope of this paper is limited to airport arrival 
capacity prediction. In the recent literature, a 
number of airport-capacity models for strategic 
TFM have been proposed. Buxi and Hansen (2011) 
generate probabilistic capacity profiles for a full day, 
by correlating current Terminal Aerodrome 
Forecasts (TAF) with historical forecasts. Provan et 
al (2011) and Kicinger et al (2012) find probability 
distributions for airport capacity given weather 
forecasts and the airport state (runway 
configurations, demand, operational standards, 
procedures, etc.).  Also, there are models that 
leverage data-mining and statistical estimation 
approaches for predicting runway configuration or 
capacity (Dhal et al, 2013 Houston and Murphy 
(2012), Ramanujam and Balakrishnan (2011)). 
Alternatively, DeLaura et al (2014) developed an 
Airport Arrival Rate (AAR) prediction model that 
captures in detail the facility-specific runway 
selection rules and spacing issues that drive AAR. 
Although all the existing models study sample 
airports to support concept development and 

validation, requiring site-specific calibration or 
detailed adaptation makes these models less 
readily applicable to other NAS airports.  

Dhal et al. (2014) proposes a model that 
determines the runway configuration and 
associated AAR and Airport Departure Rate (ADR) 
based on 1) weather forecast variables and 2) local 
preferences observed in the historical data on 
selecting configurations for given weather 
conditions. The model attempts to reflect the 
operators’ decision making processes, rather than 
being entirely data-driven, so the model structure is 
flexible to changing operational realities (without 
the need to recalibrate any parameters). Historical 
data on configuration preferences, thresholds, etc. 
can be exploited when the inputs of local facilities 
are not available, to develop a model that can be 
systematically applied to key NAS airports.  When 
inputs from local facilities are available, these 
inputs can be integrated in lieu of or in addition to 
historical preferences.  

In this paper, we use empirical data to validate Dhal 
et al.’s model. We apply the model to FAA’s 35 
Operational Evolution Partnership (OEP) airports 
and compare the predicted and observed AAR 
using both observed weather and the Terminal 
Aerodrome Forecast (TAF). The differences in 
prediction performance between weather sources 
and among airports are examined. Performance 
under various factors, such as forecast look-ahead 
time and adverse weather conditions, are also 
analyzed. The analysis provides insight into 
outstanding needs in weather forecasting and 
impact prediction. 

 

2. MODEL DESCRIPTION  

Dhal et al.’s model of predicting runway 
configuration is a mapping from a given 
combination of weather phenomena – the 
meteorological condition (MC), wind speed and 
wind direction – to a set of possible runway 
configurations. The mapping is deterministic in 
nature. Each mapped runway configuration is 
operationally eligible, and there is a set of capacity 
values – AAR and ADR – associated with such a 
configuration, derived from either data-mining or 
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local facility inputs. A configuration that is most 
likely to occur is then predicted from all the eligible 
ones.  

Figure 1 depicts the analytical steps involved in 
preparing and running the model. The first step is 
“Identify Configuration Preferences”, which 
categorizes the historically used configurations by 
MC, frequency, etc. Although not considered in this 
paper, further categorization could be based on 
local hours, arrival/departure banks, or seasons. 
The output of this step would be a summary table 
like that shown in Figure 2, which lists the observed 
configurations, the associated AAR and ADR, and 
the usage frequency. This summarized preference 
table can be either obtained from historical 
observations or from local facility inputs. 

The second step is to determine eligible 
configurations based on the forecast variables of 
the hour (ceiling, visibility, wind speed, and wind 
direction). While ceiling and visibility are used to 
determine the MC category, wind spend and 
direction are used to determine the eligible 
configurations that meet the tailwind and crosswind 
requirements.  

The third step is to select one configuration from the 
eligible ones which is most likely to occur. Several 
attributes are considered in the selection process, 
including wind preference, capacity, and the 
previous hour’s predicted configuration. Dhal et al 
(2014) has more details of the selection process.  

 

 

Figure 1. Illustration of Algorithmic Steps in 
Dhal et al.’s Runway Configuration Prediction 

Model 

 

 

Figure 2.  Sample of the Observed 
Configuration Preferences 

 

3. DATA PREPARATION  

The FAA’s ASPM database contains quarter-hourly 
airport operational data (runway configuration, 
AAR, ADR) and recorded weather variables 
(meteorological condition, ceiling, visibility, wind 
speed, wind direction).   

Configuration preferences of the OEP35 airports as 
explained in the first step of Fig 1 were derived from 
ASPM using data from April to September 2013 in 
order to capture sufficient variation in historically 
used configurations. We group airport records by 
MC and configuration and then calculate the 
frequency and the average AAR, generating a 
preference table for each airport, similar to the one 
shown in Figure 2. Note that this data-mining step 
is applied systematically to each OEP35 airport and 
does not take into account the limitations 
unrevealed in ASPM, i.e. taxiway/runway outage or 
dependencies among neighboring airports. As a 
future research effort, local inputs and adaptation 
can be included to help improve revelation of 
configuration preferences.  

The data for evaluation are collected for July 2014. 
For each airport, there are 2,976 quarter-hourly 
observations. Predictions are made using recorded 
weather from ASPM (described above), as well as 
archived historical TAFs. The recorded AARs are 
then compared with the predicted ones. 

This paper uses a universal set of thresholds to 
determine configuration eligibility due to wind, even 
though the thresholds could be airport-dependent. 
For VMC, the tolerance is set as 5 knots for tailwind 
and 20 knots for crosswind; for IMC, 3 knots for 
tailwind and 15 knots for crosswind.  

The determination of MC could also be airport-
dependent. However, this paper assumes a set of 
universal values to distinguish VMC and IMC. 

Airport MC Config Freq ADR AAR 

BOS V 22L 27 | 22L 22R 27% 12 15 

BOS V 4L 4R | 4L 4R 9 24% 14 15 

BOS V 22L 27 | 22R 7% 12 14 

BOS V 27 32 | 33L 5% 9 11 

… … … … … … 

BOS I 4R | 4R 9 28% 11 8 

BOS I 4R | 4L 4R 9 20% 13 8 

BOS I 22L 27 | 22L 22R 11% 13 14 

BOS I 22L | 22R 9% 10 8 

… … … … … … 



 
 

When using ASPM weather variables for prediction, 
MC is an input variable, i.e. no determination rule is 
applied. When using TAF data for prediction, MC is 
set to IMC when ceiling is below 1000 feet or 
visibility is below 3 statute miles; otherwise, it is set 
to VMC. Again, this threshold setting can be revised 
through adaptation effort for local facilities.  

 

4. RESULTS AND INTERPRETATION 

The airport capacity model’s performance was 
evaluated for the OEP-35 airports for July 2014, 
using the described data.  For the performance 
evaluation, hourly runway configurations and AAR 
were computed for the OEP-35 airports using the 
model, for both TAF data and ASPM recorded 
weather (which serves as a comparison baseline).  
For the purpose of performance evaluation, the 
quarter-hourly ASPM AAR data were summed to 
determine hourly AARs.  Statistics of the error 
(difference) between the model predictions and the 
ASPM-recorded AARs were determined, for 
several slices of the data, including for each airport, 
as a function of look-ahead time. For each data 
slice, two statistics were computed: 

Bias 

∑ ���������	 − ����
�	
�
	��

�
 

Mean Absolute Error (MAE) 

∑ |���������	 − ����
�	|
�
	��

�
 

where ���������	 and ����
�	 are the predicted and 
recorded capacities, respectively, for each (hour) 
sample in the data slice and � is the number of 
samples.  The bias indicates whether there is a 
systematic offset in the model predictions 
compared to the recorded AARs, while the MAE 
gives an indication of the extent of error in the rate 
prediction. 

 

4.1. Model Performance by Airport 

The bias and MAE in the model predictions for each 
airport are shown in Figures 3 and 4, for the case 
that ASPM recorded weather is used for prediction. 
In Figures 5 and 6, the recorded-weather-based 
predictions are compared with TAF-based 
predictions (where predictions up to a 24 hour look-
ahead time are averaged).  Figure 7 shows 
percentage mean absolute error, rather than the 
absolute value, for the TAF-based predictions. 

The statistical analysis shows that only a small 
number of airports exhibit a significant bias in model 

predictions, whether ASPM recorded weather or 
TAFs are used.  Only 5 of the 35 airports show a 
bias of over 10 aircraft per hour (4 are positively 
biased, 1 is negatively biased) for the ASPM-based 
predictions, and only 6 show such a bias for the 
TAF-based predictions.  The bias is less than 5 
aircraft per aircraft for a significant majority of OEP-
35 airports.  Thus, for most airports, there is no 
systematic offset in predictions. 

The MAE is also fairly small for most OEP-35 
airports, whether ASPM recorded weather or TAFs 
are used. Only 7 of the 35 airports have an MAE of 
over 15 aircraft per hour, for both ASPM-based and 
TAF-based predictions.  Almost all of the other 
airports have an MAE of less than 10 aircraft per 
hour.  Further, the 7 airports with high MAE are 
precisely the airports with the largest prediction 
bias.  Six of these seven airports also have the 
largest percentage MAE. 

The performance of the model for each OEP-35 
airport is very comparable, for TAF-based and 
ASPM-recorded-weather- based predictions. In 
particular, the difference in the bias and MAE for the 
two cases is at most 2 aircraft for almost every 
airport.  Typically, TAF-based prediction incurs a 
higher error, but in the aggregate this additional 
error is rather small. 

The data analysis indicates that the model performs 
well for a large majority of the airports, upon use of 
real forecast data for prediction (with look-ahead of 
up to 24 hours).  Errors in weather forecasts do 
cause some degradation in the performance, but 
the impact of forecast error on the whole is small: 
the error is primarily caused by model inaccuracies, 
not by weather-forecasting inaccuracies.  
Furthermore, the few airports with significant 
prediction error also exhibit significant bias, and in 
fact the bias is the primary contributor to the MAE.  
This observation suggests that prediction errors 
primarily arise due to systematic offsets in AAR 
prediction at a small number of airports, perhaps 
due to airport-specific operations that are not 
represented in the model. For the seven airports 
with the largest errors, we further examine the 
operations to identify the main causes of bias and 
found that: 

DFW, MCO, and LAX had ongoing construction in 
July 2014 limiting runway use, thus leading to an 
over-prediction of the AAR.   

BOS: The most common configuration is being 
predicted accurately, but there is a discrepancy 
between the nominal AAR for this configuration and 
the ASPM-reported AAR. This seems to be an 
ASPM reporting issue. 



 
 

LGA, CLT: low capacity configurations are being 
used at night, which are not predicted correctly; this 
is not a significant problem for TFM, since 
congestion is rare during nighttime hours. 
Excluding the nighttime hours, the model for CLT 
has Bias=0.83 and MAE=8.5; while LGA has 
Bias=1.6, MAE=5.0. 

CVG: A runway configuration not observed in the 
2013 data was frequently used in July 2014, thus 
causing prediction errors. 

We note that the biases in model prediction arise at 
these airports from identifiable causes and 
therefore are either not significant for strategic TFM 
(e.g., nighttime mis-prediction), or can be corrected 
by allowing input from control-tower personnel or 
managers.  For instance, the configuration-
preference table could be updated by operators to 
reflect changes in allowed configurations due to 
construction or due to altered runway-selection 
procedures.  

 

 

Figure 3: Model bias for each airport, when recorded weather from ASPM is used. 

 

 

Figure 4. MAE in model predictions for each airport, when recorded weather data from ASPM is 
used. 

 

 

Figure 5. Bias in model predictions by airport, comparison of TAF and ASPM based predictions. 
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Figure 6.  MAE in model predictions by airport, comparison of TAF and ASPM-based predictions.  

 

 

Figure 7. Percentage MAE by airport, TAF-based predictions. 

 

4.2. Model Performance vs. Look-ahead 
Time 

When forecasts such as the TAF are used for AAR 
prediction, it is natural to study whether the forecast 
look-ahead influences model performance and 
therefore we explore the MAE as a function of look-
ahead time (aggregated across all airports).  
Specifically, the prediction MAEs for look-ahead 
times in 3 hour bins are shown in Figure 8.  The 
performance shows remarkably little dependence 
on the LAT, with nearly uniform performance for 
look-ahead times of less than 15 hours.  A slight 
degradation in performance is seen after 15 hours, 
with a more significant degradation after 24 hours.  
Based this analysis, the TAF appears to provide 
sufficiently accurate forecast data of wind and 
ceilings over a 24 hour look-ahead, to permit 

effective AAR prediction.  However, it is worth 
cautioning that this analysis is aggregated over 
wind/MC conditions: the forecasts and hence the 
model may show a more pronounced dependence 
on look-ahead time during poor weather conditions. 

Comparing the daytime and overall performance 
shown in Figure 8, the model also exhibits better 
performance during day-time hours, with a 40% 
improvement in performance during 6AM-11PM as 
compared to the nighttime hours. The performance 
degradation during the nighttime reflects the use of 
sub-optimal configurations (lower-capacity 
configurations), due to reduced demand pressure. 
Because of low demand, congestion is not a 
concern during nighttime hours, so the poorer 
performance during nighttime hours is not a 
significant concern for strategic TFM.
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Figure 8. Dependence of MAE on look-ahead time (using TAF). 

 

5. CONCLUDING REMARKS 

Arrival capacity prediction of Dhal et al.’s model is 
“operationally-structured” and is promising for quick 
application to the OEP35 airports. Observed 
weather and TAF are applied for performance 
validation. It is found that model performance using 
TAF is comparable to performance using recorded 
weather.  

To capture enough variation in runway 
configurations, data from summer months in 2013 
are used to derive configuration preferences. For 
airports that demonstrate a consistent trend in 
configuration selection, the prediction model 
performs well. On the other hand, airports 
undergoing recent changes (i.e. runway/taxiway 
closure, etc.) have predicted AARs that have a 
larger error.   More recent data could be included in 
the generation process of configuration 
preferences in order to improve model 
performance.  

Ongoing research is focused on performance 
improvement. The inputs of local facilities could be 
included in the modeling process to address the 
account for events that are not observable in the 
historical data. Also, the model could be assessed 
with other forecast products such Short-Range 
Ensemble Forecast (SREF) to capture the impact 
of weather uncertainty on airport capacity 
prediction. 
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