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1.  INTRODUCTION1 
 
  Ensemble forecast systems (EFS) are a popular 
method that provide forecasters with an estimate 
of the uncertainty in the future state of the 
atmosphere.  Statistical postprocessing 
techniques have been used to calibrate the 
reliability of an ensemble forecast from global 
models for a number of weather elements (Raftery 
et al 2005; Krzysztofowicz and Evans 2008; Unger 
et al 2009).  As EFS increase the number of 
members and more EFS become available, more 
resources are required for postprocessing.   
   The Meteorological Development Laboratory 
(MDL) of NOAA’s National Weather Service has 
developed a statistical postprocessing technique 
called Ensemble Kernel Density MOS (EKDMOS).  
EKDMOS produces reliable and accurate 
probabilistic guidance for 2-m temperature, 2-m 
dewpoint, daytime maximum temperature, and 
nighttime minimum temperature.  The operational 
version of EKDMOS uses 42 North American 
Ensemble Forecast System (NAEFS; Candille 
2009) members.   
   This extended abstract documents a series of 
sensitivity studies to help determine the minimum 
number of ensemble members needed to calibrate 
the ensemble mean and spread, while conserving 
limited computational resources.  Statistical 
postprocessing techniques also require a 
representative reforecast sample for calibration 
when a model update occurs.  Ensemble 
members from NCEP’s Global Ensemble Forecast 
System (GEFS) were selected for this work since 
an expected model upgrade in spring 2015 will 
require a redevelopment of EKDMOS equations.  
Recent discussions within NOAA have suggested 
that a 5-member reforecast sample would provide 
adequate information to support the operational 
needs of existing statistical postprocessing 
techniques.  Results from this study will validate 
this recommendation. 
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2.  DATA 
 
2.1 GEFS Model Data 
 
   Three years of GEFS data from April 1, 2011 
through March 31, 2014 were used for this study 
and were divided into three warm seasons (April 
through September) and three cool seasons 
(October through March) for development and 
verification.  K-fold cross validation was performed 
by rotating through our dataset, using two years of 
data for development while withholding the third 
year for independent verification.  A set of 334 
stations were chosen for development.  These 
stations are located throughout the conterminous 
United States (CONUS), Alaska, Hawaii, and U.S. 
territories and are known by MDL to be reliable 
reporting stations.  EKDMOS equations were 
developed for 2-m temperature, 2-m dewpoint, 
daytime maximum temperature, and nighttime 
minimum temperature.  Predictors useful for 
predicting the temperature suite of elements were 
offered for regression.  The predictors chosen 
most frequently were model 2-m temperature and 
model 2-m dewpoint.  Three-hourly equations 
were generated for 2-m temperature and dewpoint 
out to 192-hours, and then 6-hourly equations 
were generated through 264-hours.  Daily daytime 
maximum temperature and nighttime minimum 
temperature equations were generated through 
day 16. 
 
2.2 Observation Datasets 
 
  An observation dataset was created from an 
archive maintained by MDL for the temperature 
suite of elements.  A set of “extreme” temperature 
observations was also created for 
verification.  This was done by taking 2-m 
temperature observations from 1980 through 2009 
for our 334 stations, ranking the observations in a 
rolling 5-day sample for each day of the year (-2 
days, +2 days), and computing the climatological 
5% and 95% values.  The observations from our 
April 2011-March 2014 sample were then 
compared to these climatological values and were 
only kept if the value fell within one of the 5% tails. 



 
3.  METHOD 
 
3.1 EKDMOS Technique 
 
  The EKDMOS technique uses ensemble 
members to produce probabilistic forecasts for the 
temperature suite of weather elements.  EKDMOS 
starts by using multiple linear regression with the 
ensemble mean values used for development 
(Glahn 2009).  A second regression step is 
performed using the spread of the bias corrected 
ensemble members in our development sample to 
create a spread-skill relationship specific to each 
station (Veenhuis and Wagner 2012; Veenhuis 
2013).  The regression equation is applied to each 
ensemble member in our independent dataset and 
kernel density estimation is used to create a single 
probabilistic density function (PDF).  The spread-
skill equation is used to adjust the spread of the 
PDF to match the expected error.  The PDF is 
then converted to a cumulative distribution 
function (CDF).  An EKDMOS forecast consists of 
11 points from the CDF along with the ensemble 
mean. 
 
3.2 Test Cases 
 
  In order to test EKDMOS with fewer than 21 
members, ensemble means were created using 
different numbers of ensemble members.  While 
gathering data for these tests, two assumptions 
were made.  First, it was assumed that any 
dataset, whether it be from a reforecast or from 
MDL’s archive, would always contain the GEFS 
control member.  It is also assumed that the 
lowest numbered ensemble members would be 
available.  Ensemble mean values were generated 
using 11 members (control, members 1-10), 7 
members (control, members 1-6), 5 members 
(control, members 1-4), and 3 members (control, 
members 1-2).  These means were used to 
develop MOS equations that were then applied to 
all 21 GEFS members in our independent 
dataset.  Kernel density estimation was used to 
combine each set of members into a 
PDF.  Spread-skill equations were also developed 
from our development sample for each ensemble 
set.  These equations were used to correct the 
spread of the corresponding PDFs prior to 
converting them to CDFs. 
  The EKDMOS technique was also applied using 
all 21 GEFS members for development.  This 
represents the standard EKDMOS approach and 
served as a baseline for comparison.  EKDMOS 
equations were also created using only the control 

member.  Since we are not able to develop a 
spread-skill equation from only one member, the 
EKDMOS spread adjustment technique (Glahn et 
al, 2009) was used to correct the spread of the 
control member PDFs.   
 
4.  VERIFICATION 
 
  Verification scores were produced for the first 
moment and for the second moment of each set of 
GEFS CDFs.  Cool season 2-m temperature 
results will be shown here.  Scores were also 
calculated for 2-m dewpoint, daytime maximum 
temperature and nighttime minimum temperature 
for warm and cool seasons, as well as for the 
warm season 2-m temperatures.  Results were 
found to be similar to the ones discussed here.  
 
4.1  First Moment Verification 
 
 The mean absolute error (MAE) and bias scores 
were calculated to compare the skill of forecasting 
the first moment.  The ensemble mean was used 
to verify the first moment since it is the 
deterministic part of the EKDMOS forecast.  The 
skill of the ensemble median will be shown using 
the continuous ranked probability score (CRPS), 
which has the MAE of the median as a component 
(Hersbach 2000).  
  MAE results for cool season 2-m temperatures 
are shown in figure 1.  Since over-plotting often 
makes it difficult to determine any differences 
among the tests, the percent improvement from 
the 21-member baseline test are also shown in 
figure 1.  Figure 2 shows the forecast bias for the 
same tests.  All plots show very little dependence 
on development ensemble size. 
 
4.2  Second Moment Verification 
 
  The second moment of the forecast PDF was 
verified using the CRPS and probability integral 
transform (PIT) histograms.  While PIT histograms 
do visualize the reliability of a forecast system, it is 
often difficult to compare the PIT histogram of one 
system with another. Consequently, the squared 
bias in relative frequency (SQBIAS; Glahn et al 
2009) was calculated.   
  Figure 3 shows the CRPS scores for cool season 
2-m temperature.  Again, the percent improvement 
score is shown to help detect any differences from 
the baseline test not seen due to over-
plotting.  Much like the MAE results, the CRPS 
results show that estimates of the second moment 
depend little on the development ensemble size. 



  Figure 4 shows the PIT histograms for all tests 
for the 48-hour cool season temperatures and 
figure 5 shows results for the 192-hour 
temperatures.  All histograms are relatively flat, 
except for excess at the extremes, showing overall 
good reliability for each test.  Results for all other 
time steps were produced and were found to show 
similar reliability. 
  Figure 6 shows the SQBIAS scores for each 
test.  Previous tests have shown that SQBIAS 
values less than 0.04 can be considered 
insignificant.  Values from all tests are shown to be 
within this range, confirming the good reliability 
shown in the PIT histograms. 
 
 
4.3 Extreme Temperature Verification 
 
   Verification scores were also computed using 
our “extreme” temperature observation 
dataset.  This dataset represents some of the 
toughest forecasts from our 3-year sample and 
arguably some of the most useful guidance for our 
users.  MAE scores are shown in figure 7.  Unlike 
the scores shown in figure 1, we can now 
determine the difference between the test cases, 
particularly after 84-hours.  Results show that 
developing with larger ensembles leads to slightly 
better MAE scores in the extended ranges.  The 
percent improvement plot shows that only the 
control member test deviates from the baseline 
test by more than 5 percent.  Figure 8 shows the 
bias scores for the “extreme” observation 
dataset.  With the exception of the control member 
test, we again see very little difference in scores 
between test cases. 
  The CRPS scores in figure 9 are very similar until 
about 120-hour, where once again we see the 
benefit of having more ensemble members in our 
development sample.  The percent improvement 
plot shows that the 5-member test does not 
degrade from our baseline test by more than about 
5 percent, while the control member test degrades 
by more than 10 percent in the extended 
ranges.  Figure 10 shows the SQBIAS 
score.  Note that the scores are no longer within 
the noise range.  Again we see that developing 
with more members leads to improved reliability in 
the extended ranges. 
 
5.  SUMMARY AND CONCLUSION 
 
  Statistical postprocessing techniques like 
EKDMOS typically use all available ensemble 
members when developing probabilistic 
guidance.  Bulk statistics show than when fewer 

ensemble members are used for development, 
there is no significant difference in the first or 
second moment verification scores.  It is not until 
we look at “extreme” temperature verification that 
we see any differences in verification scores, 
which become noticeable mainly after day 
4.  Recent discussions within NOAA on the GEFS 
reforecast configuration have suggested rerunning 
with 5 ensemble members to coincide with the 
next model upgrade.  This number appears to be 
adequate for EKDMOS and similar postprocessing 
techniques.  This study focused on the 
temperature suite of weather elements.  Further 
study is required to see if this recommendation is 
suitable for other elements. 
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Figure 1.  Mean absolute error (top) and percent improvement from the baseline 21-member mean 
(bottom) for cool season 2-m temperature. 
  
  



 
Figure 2.  Bias for cool season 2-m temperature. 



 

Figure 3.  Continuous ranked probability score (top) and percent improvement from the baseline 21-
member mean (bottom) for cool season 2-m temperature. 
  



 

 
Figure 4.  Probability integral transform (PIT) histograms for 48-hour cool season 2-m temperature. 
  



 
Figure 5.  Probability integral transform (PIT) histograms for 48-hour cool season 2-m temperature. 
  



 
Figure 6.  Squared bias in relative frequency (SQBIAS) for cool season 2-m temperature. 

  



  
Figure 7.  Mean absolute error (top) and percent improvement from the baseline 21-member mean 
(bottom) for cool season 2-m temperature.  Observations from the 5% climatological tails were used for 
verification. 
  



 
Figure 8.  Bias for cool season 2-m temperature.  Observations from the 5% climatological tails were 
used for verification. 
  



 
Figure 9.  Continuous ranked probability score (top) and percent improvement from the baseline 21-
member mean (bottom) for cool season 2-m temperature.  Observations from the 5% climatological tails 
were used for verification. 
  



 
Figure 10.  Squared bias in relative frequency for cool season 2-m temperature.  Observations from the 
5% climatological tails were used for verification. 
 
 


