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1. INTRODUCTION 
 
The generation of solar power is intermittent due to 

the advection, growth, and dissipation of clouds.  
Generators that are dispatched by a utility company or 
independent systems operators must balance this 
intermittent source of power. In order to appropriately 
balance the expected energy demand, utility companies 
and independent systems operators will increasingly 
depend upon accurate solar power nowcasting for real-
time dispatch of its units.  

The prediction of solar power through statistical 
techniques has gained research interest in the last 
decade. Sharma et al (2011) found a Support Vector 
Machine approach produced the lowest Global 
Horizontal Irradiance (GHI) forecast error. Hassanzadeh 
et al (2011) and Dazhi et al (2012) found 
AutoRegressive Integrated Moving Average (ARIMA) 
models most accurate for short-term predictions of solar 
power and solar irradiance while Morf (2014) used a 
Markov process to predict sunshine and cloud cover. 
Mellit (2008) states that 37 studies have used Artificial 
Neural Networks (ANNs) in the modeling and prediction 
of solar radiation. More recently, Martin et al. (2010), 
Hall et al (2011), Marquez and Coimbra (2011), Wang et 
al (2012), Chu et al (2013), and Cornaro et al (2013) 
determined that a final model based on ANNs improves 
solar irradiance or solar power forecast accuracy. 

It is well known that solar irradiance will have 
varying limits of predictability depending on the forecast 
site and its weather conditions. Weather regimes with 
broken clouds will produce a more intermittent source of 
power from a photovoltaic power plant than weather 
regimes that are either clear or fully cloudy. Several 
studies have examined the predictive skill of statistical 
forecast models in various weather conditions. Pedro 
and Coimbra (2012) found the accuracy of an ANN 
optimized with a Genetic Algorithm had a strong 
seasonal dependence. Marquez et al (2012) correlated 
total sky images, infrared data, and solar radiation 
observations at the surface to use as input into an ANN 
and found the variability of solar radiation to be strongly 
dependent on clouds. Each day was classified as 
sunny, partly sunny or cloudy and an ANN was used to 
forecast the daily profile of the power produced by a PV 
plant in Mellit et al (2014). Fernandez et al (2014) 
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concluded that the ANN model has accurate 
performance for days characterized by direct irradiance 
(clear days) and for days characterized by diffuse 
irradiance (cloudy days). 

This work tests the blending of cloud regime 
classification and artificial intelligence forecasting to 
produce a more accurate GHI forecast. Similar to the 
methodology by Greybush et al (2008), who classify and 
identify weather regimes before applying optimal 
weights to ensemble forecasts, we employ a K-Means 
Clustering technique on various sources of weather and 
cloud data. ANNs are then implemented on each 
weather regime independently. 

Predictions are made for the clearness index (Kt), 
which is the ratio of the observed GHI at the surface to 
the Top Of Atmosphere (TOA) expected GHI. The 
prediction of Kt is important for utility companies 
because it quantifies the amount of attenuation from 
aerosols and clouds at a particular location (Marquez et 
al 2013) 

We wish to make short term predictions for multiple 
sites near Sacramento, California for the next 15 minute 
interval. In operational forecasting, these short-term 
predictions are blended with forecasts from Numerical 
Weather Prediction Models and a satellite based cloud 
advection technique in the National Center for 
Atmospheric Research SunCast System that predicts 
solar power out to 168-hours. 

Section 2 focuses on our methodology. In section 3, 
we discuss the datasets: the SMUD irradiance network 
and the DICast/METAR predictor network. In section 4, 
we summarize the methods of cloud regime 
identification.  In section 5, the baseline clearness index 
persistence forecast and the non-linear forecasting 
technique ANNs are described. In section 6, 
conclusions are explained and future work is presented. 

 
2.   METHODOLOGY 
 
The goal of this work is to develop a regime-

dependent short-term prediction of solar radiation.  Our 
methodology begins by identifying the cloud regime, and 
then employs an Artificial Neural Network to make a 
prediction for each individual regime as depicted in 
Figure 1. The first step determines which set of inputs is 
best for cloud regime classification by the K-Means 
Clustering algorithm. Then this best set of inputs is used 
for classification of regimes using a K-Means Clustering 
algorithm. Finally, ANNs are constructed on each of the 
cloud regime datasets independently. An ANN is also fit 
using all data without regime-identification for 
comparison. 
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Figure 1. Process design from top to bottom: first 
classify cloud regimes, then apply ANN models to 
predict the clearness index. 

By identifying the cloud regime before prediction, it 
is possible to build statistical forecasting techniques 
specifically for each cloud regime.  The statistical 
learning models, in this case the ANNs, are trained on 
each cloud regime independently, and thus model each 
cloud regime. Therefore, in a real-time forecasting 
environment the predictions are made by identifying the 
current cloud regime and then applying the model built 
for that cloud regime to predict the next 15-min average 
clearness index.  The ANNs use weather forecasts and 
irradiance observations as input to predict clearness 
index at multiple California locations. 

 
3.  DATA 
 
The irradiance observation network used in this 

study is that of the Sacramento Municipal Utility District 
(SMUD) in Sacramento, California.  We consider data 
from the eight solar power forecast sites that measure 
irradiance, shown in Figure 2 as blue triangles.  The 
GHI observations are available from January 25th, 2014 
through October 31th, 2014.  The temporal resolution of 
the raw data is one minute and averages are computed 
over 15 minute intervals.  This interval was selected 
after communication with several utility companies and 
agrees with the shortest time range for which a forecast 
is currently useful for dispatch decision-making.   

 

 
Figure 2. Map of the SMUD sites (blue triangles) and 
METAR/DICast predictor sites (red X’s). 

The weather observation network used here is the 
Meteorological Aviation Report (METAR) network, which 
are hourly surface weather observation stations typically 
located at airports across the United States.  The 
METAR observations are quality controlled and 
processed for ingestion into the National Center for 
Atmospheric Research (NCAR) Dynamic Integrated 
foreCast (DICast) System (Mahoney et al. 2012).  The 
closest METAR sites to the Sacramento area were 
found to be the three locations plotted as red X’s in 
Figure 2. We use six weather variables that are quality 
controlled and pre-processed with the DICast system: 
cloud cover, dewpoint temperature, probability of 
precipitation in the last hour, quantitative precipitation in 
the last hour, temperature, and wind speed.  These six 
observed weather variables at three stations are 
combined with the last three 15-min observed clearness 
index values for a total of 21 predictors. The data are 
split into 2/3 training and 1/3 testing.  We will show our 
results for the testing dataset. 

4.  CLOUD REGIME IDENTIFICATION 

4.1. K-Means Clustering 
 
To test our hypothesis that breaking the training 

and testing datasets into subsets by cloud regimes can 
improve overall forecast accuracy, we identify the cloud 
regime before applying the ANN with the K-Means 
Clustering algorithm to the individual regimes.  The K-
Means algorithm clusters data by separating samples 
into K groups by minimizing the within-cluster sum-of-
squares. The process begins by dividing a set of 
samples (N) into K clusters that are described by the 
mean of the samples, or centroids, of the cluster.  The 
K-Means clustering algorithm selects the optimal 
centroid so as to minimize the within-cluster-sum of 
squares given by, 

 

min( 𝑥! −   µμ𝑗
!
  !

!!! )                ,                   (1) 
 

where the minimization is computed for each instance (i 
and cluster j. The value, 𝑥! −   µμ𝑗, is the distance 
between the vector of instance variables (𝑥!) and the 



	
   3	
  

cluster center (µμ!). All predictors are normalized before 
being clustered to avoid having clusters dominated by 
the predictors with the largest magnitudes.  

We examine the percentage of variance explained 
by the K-Means Clustering algorithm to decide on the 
best number of clusters (K). The goal is to find the 
choice of K that best balances the accuracy of assigning 
each data set to a cluster without over-fitting the number 
of clusters to the training data. We plot the amount of 
variance explained as a function of K, to select the 
optimal number of clusters. Initially the rate of variance 
explained drops precipitously but the rate decreases as 
the number of clusters increases. K is chosen at the 
point at which there is a slowing of the rate of variance 
by adding more clusters. This analysis was performed 
for all three predictor sets and the analysis for the 
clearness index predictors is displayed in Figure 3. 
Seven clusters were selected due to the slight change in 
the slope, the average within-cluster sum-of-squares 
levels off as the number of clusters increases. Similar 
plots for Dataset A and Dataset B showed five as the 
best number for K and a summary of the datasets, the 
predictors and the number of clusters appears in Table 
1. 

 

 
Figure	
   3.	
   Within-­‐cluster	
   sum-­‐of-­‐squares	
   plotted	
   as	
   a	
  
function	
  of	
  the	
  number	
  of	
  clusters.	
  The	
  circle	
  highlights	
  
that	
  seven	
  clusters	
  were	
  selected	
  in	
  this	
  case.	
  

Table	
  1.	
  Description	
  of	
  the	
  three	
  data	
  sets	
  used	
  to	
  
determine	
  the	
  best	
  data	
  for	
  clustering	
  cloud	
  regimes.	
  

Name Predictors Number 
of 

Clusters 

All Met 
Predictors 
(Dataset A) 

• Cloud Cover 
• Dewpoint 

Temperature 
• Probability Precip 1-hr 
• QPF 1-hr 
• Temperature 
• Wind Speed 
• Clearness Index last 

45-min (three 15-min 
intervals) 

5 

 

Cloud 
Predictors 
(Dataset B) 

• Cloud Cover 
• Probability Precip 1-hr 
• Clearness Index last 

45-min (three 15-min 
intervals) 

5 

Clearness 
Index (Kt) 
Predictors 
(Dataset C) 

• Clearness Index last 
45-min (three 15-min 
intervals) 

7 

   

 

We analyzed the clusters selected for each set of 
input variables by examining groupings by each 
predictor. The resulting series of plots demonstrate the 
regime classification for each predictor versus the 
regime classification for the previous 15-min clearness 
index value.  The previous 15-min clearness index is the 
last available observation and is the value used for the 
clearness index persistence forecast. This analysis was 
accomplished for each of the predictors to examine 
patterns in the K-Means clustering algorithm.  

Figure 4 is an example plot comparing 15-min 
average clearness prediction to the 15 to 30-min 
average clearness index observations.  This plot reveals 
some interesting features of the results of the clustering.  
First, the regime classifications correspond to different 
magnitudes of the clearness index, which was 
anticipated. Second, in the middle range of the 
clearness index values, the clusters are based not only 
on the values of the clearness index, but also on the 
trend of the clearness index. For instance, the regime 
colored black includes instances where the previous 30-
min clearness index value is centered around 0.7, while 
for the previous 15-min clearness index value is 
centered around 0.5.  Thus, this regime exhibits a 
decreasing trend in clearness index.  The opposite is 
true for the regime colored light blue. This observation 
indicates that the K-Means algorithm clusters include 
information regarding the trend in the clearness index 
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values as well as the clearness index values 
themselves.  

The Dataset C was selected for regime 
classification because the regime-dependent ANNs 
error was lowest when using Dataset C for regime 
classification and the minimal amount of data needed to 
cluster regimes.  

 

	
  

Figure	
   4.	
   Comparison	
   of	
   the	
   K-­‐Means	
   regime	
  
classification	
   for	
   two	
  predictors:	
   the	
  previous	
   two	
  15-­‐
min	
   average	
   clearness	
   index	
   observations	
   for	
   the	
  
clearness	
   index	
   dataset.	
   Each	
   color	
   represents	
   a	
  
different	
  cluster,	
  or	
  regime,	
  classification.	
  

 
4.2. Analysis of Clearness Index Variability 
 
Regimes with greater temporal clearness index 

variability (variable cloudiness) are expected to be more 
difficult to predict.  To assess this variability, the 
standard deviation of the clearness index over the past 
three 15-min averages was computed. Figure 5 shows 
clearness index variability histograms for each regime 
classified on the Dataset C. The colors correspond to 
the same clusters plotted in Figure 4. The subplots for 
the seven regimes demonstrate that different regimes 
have different distributions of clearness index variability 
and we expect the forecast uncertainty to correspond to 
the magnitude and distribution of each regime’s 
clearness index variability.  The generally clear (green) 
and cloudy regimes (red and yellow) made a mode near 
zero while the partly cloudy regimes tend to have a 
higher mode. 

 	
  

Figure	
   5.	
   Subplots	
   for	
   each	
   cloud	
   regime’s	
   temporal	
  
variability	
  for	
  the	
  regimes	
  identified	
  on	
  Dataset	
  C.	
  Each	
  
subplot	
   has	
   twenty	
   bins	
   for	
   each	
   cloud	
   regime	
   and	
  
each	
  color	
  correlates	
  with	
  the	
  same	
  cluster	
  color	
  from	
  
Figure	
  4.	
  

5.  PREDICTION TECHNIQUES 

5.1. Clearness Index Persistence 
 
We wish to compare our prediction techniques to a 

baseline prediction method. The clearness index 
persistence forecast is our chosen baseline.  The 
clearness index persistence (or “smart persistence”) 
forecast uses the last available observation of Kt as the 
next forecast. This forecast is difficult to improve upon 
when the cloud cover, or lack thereof, is constant. When 
multiplied by the TOA GHI, it inherently corrects for 
changes in azimuth with time. 

 
5.2. Artificial Neural Networks 
 
We employ the ANN as the non-linear Artificial 

Intelligence (AI) prediction technique for our predictions 
. ANN’s advantages include their ability to model non-
linear processes without the assumption of the form of 
the relationship between input and output variables.  In 
the review by Mellit (2008), the AI models used in many 
studies have been successfully developed to model 
solar radiation, clearness index, and insolation with no 
transformations of the data necessary for prediction.   
Sfetsos and Coonick (2000) found that AI approaches 
significantly outperform traditional linear models in uni- 
and multi-variate studies, with the ANN feed-forward 
approach showing the best results.  
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Figure 6. Schematic of a feed-forward Artificial Neural 
Network used in this study. 
 

The ANN used here (Figure 6) is a feed-forward 
neural network trained by a backpropagation algorithm, 
also known as a multi-layer perceptron (Rosenblatt 
1958).  This ANN configuration has several tunable 
parameters that were determined from a sensitivity 
study on a training dataset. The best ANN configuration 
was selected based on a sensitivity study that produced 
the lowest test errors for the dataset without regime-
identification (not shown).  The configuration of the ANN 
with the lowest error had one hidden layer with ten 
hidden nodes.  

 
5.3. Regime-Dependent ANN Prediction Results 
 
To analyze the performance of the ANNs trained on 

each of the regimes independently, the Mean Square 
Error (MSE) on the testing datasets is computed.  The 
MSE of the ANN for each regime is compared to the 
MSE for forecasts given by clearness index persistence. 
The MSE is calculated as, 

 
𝑀𝑆𝐸 =    !

!
   ((𝑜𝑏𝑠 𝑖 − 𝑝𝑟𝑒𝑑 𝑖 )!!

!!!        ,         (2) 
 

where n is the number of instances in the testing data. 
To compare the skill of the regime-dependent ANNs to 
the clearness index persistence, the percent 
improvement of the MSE is computed and recorded in 
Table 2. Column two displays the percent improvement 
with each regime’s testing dataset size listed in column 
three and the variability of the clearness index shown in 
column four. The first important feature of these results 
is the differences in percentage improvement across the 
regimes.  The percent improvement of the regime-
dependent ANN MSEs over that for clearness index 
persistence varies from -30.9% to 55.3%.   The regime 
with the highest clearness index variability, regime four, 
has the highest percent improvement over clearness 
index persistence.  Forecast improvements during the 
most variable regime, i.e. partly cloudy conditions, can 
aid utility companies and independent systems 
operators in planning their units to dispatch.  The 
negative percent improvements are likely amendable by 
regime-dependent tuning of the weight decay term in 
the ANN configuration to give more weight to the 
previous clearness index observations, which will be 
addressed in future research. Finally, the average 
percent improvement for all regimes is 17.8%, which is 
a substantial improvement over the clearness index 
persistence. In addition, the results for the regime-
dependent ANNs had lower mean error compared to the 
ANN that was trained without regime identification. 

One can further reduce the overall error by 
eliminating the cases of negative improvement, 
effectively what the wait decay mentioned above would 
achieve.  To accomplish this, we use the forecasts 
made with the regime-dependent ANNs on all regimes 
except regimes two and seven, which showed negative 
improvement.  For these cases, the predictions were 
replaces with the clearness index persistence. The 

resulting combination of the two approaches showed a 
mean percentage improvement over clearness index 
persistence increased to 20.7%. It is likely that an 
increase in the size of the training and testing datasets, 
as well as fine-tuning the ANN configuration for the 
regimes with the highest errors will lead to greater 
improvements over the clearness index persistence. 
 
 
 
Table	
   2.	
   Percent	
   improvement	
   of	
   the	
   MSE	
   for	
   the	
  
regime-­‐dependent	
   ANNs	
   compared	
   clearness	
   index	
  
persistence	
  in	
  column	
  2.	
  Columns	
  3	
  and	
  4	
  describe	
  the	
  
size	
   of	
   the	
   testing	
   data	
   for	
   each	
   regime	
   and	
   the	
  
average	
  standard	
  deviation	
  of	
  the	
  clearness	
  index	
  over	
  
the	
  past	
  three	
  15-­‐min	
  observations.	
  

Clearness 
Index 

Regime 

Percent 
Improvement 

Over Kt 
Persistence 

Testing 
Data 
Size 

Kt 
Variability 
(standard 
deviation) 

1 10.5% 324 0.12 

2 -30.9% 336 0.04 

3 8.1% 1216 0.04 

4 55.3% 306 0.13 

5 47.2% 398 0.09 

6 20.9% 796 0.04 

7 -24.7% 285 0.11 

Average 17.8%   

 
 

6. CONCLUSIONS AND FUTURE WORK 
 
We have tested a very short-range regime-

dependent solar irradiance prediction system.  The 
system uses K-Means clustering to classify cloud 
regimes and applies an ANN to each regime 
independently.  The preliminary results for the regime-
dependent 15-min average clearness index forecasts 
show substantial improvement over the baseline 
clearness index persistence forecasts. 

This paper reports on data from one region, the 
Sacramento Valley in California. We plan to test these 
methods for more locations and a longer time series. In 
addition, clearness index forecasts will be made at 15-
min intervals out to three hours. A hierarchical Bayesian 
linear regression technique will be also be tested to 
create calibrated forecast uncertainty estimates. 
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