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1. INTRODUCTION  

Formation of a tropical cyclone eye is often 
associated with the beginning of rapid 
intensification, so long as the environment remains 
favorable (Vigh et al, 2012). Thus, determining the 
onset of eye formation is very important for intensity 
forecasts.  By the same token, eye formation is also 
important for tropical cyclone location estimation as 
the cyclone’s center becomes obvious when an eye 
is present.  

Currently the determination of eye formation 
from satellite imagery is generally performed 
subjectively as part of the Dvorak intensity estimate 
and/or official warning/advisory/discussion 
processes.  At present, little investigation has been 
made into the use of objective techniques. As a 
consequence, much of the satellite imagery 
available to depict eye-formation is not used.  
Therefore objective automated methods of 
performing eye detection are highly desirable 1) to 
improve tropical cyclone intensity forecasts and 2) 
to assist automated tropical cyclone center fixing 
algorithms. This also implies that different center 
fixing methods likely are needed depending on 
whether an image contains an eye.  

 
 

2. EYE DETECTION DATA 

A dataset consisting of 2684 IR images 
contained in the CIRA/RAMMB TC image archive  
(Knaff et al. 2014) from the years 1989-2013, and 
comprising just those tropical cyclone cases with 
maximum wind speed  greater than 50 knots (26 
ms

-1
) has been assembled for use with this project.  

Within each of these images, an area of 80x80 
pixels near the storm center, as determined from 
Automated Tropical Cyclone Forecasts (ATCF; 
Sampson and Schrader 2000) best track data data, 
was selected for use with the algorithm. This area 
was unrolled to form a 6400 element vector. Each 
vector was inspected for missing data.  Seven 
vectors were excluded due to missing data, leaving 
2677 “good” vectors.  Finally, all of the “good” 
vectors were combined to form a 2677x6400 
element matrix. Each image has an eye or no-eye 
classification associated with it which was derived 
from information contained in the operational 
Dvorak intensity fixes (see Velden 2006) produced 
by the Tropical Analysis and Forecast Branch 
(TAFB) at the National Hurricane Center (NHC). 
These fixes are typically generated every six hours 
and are considered truth for the algorithm 
development described here.   

  
 
Figure 1. Example IR images from Hurricane Katrina. Boxes show the selection of pixels used with the algorithm. 
Image classified as “eye absent” (left). Image classified as “eye present” (right) 
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Based on that information, IR images were 
placed into one of the two categories: “Eye Present” 
or “Eye Absent”.  Approximately 60% of the data 
was subjectively classified as “Eye-Absent“ and the 
remaining 40% was classified as “Eye-Present“. To 
evaluate the quality of the eye detection, these data 
were randomly shuffled and partitioned so 70% of 
the data would be used for training and 30% would 
be used for testing. Figure 1 shows consecutive six-
hourly images for Hurricane Katrina.  In this case, 
the image on the left was classified as “ Eye 
Absent“ and the image on the right was classified 
as “Eye Present.“ 

 
3. PRINCIPLE COMPONENT ANALYSIS/CLASS 
SEPARABILITY 

 
Each raw sample (i.e., image) used in this 

project is represented by a 6400 element vector.  
However, only 2677 samples are available for use 
in this project. This relatively low number of 
samples compared to the dimensionality of the data 
does not sufficiently explain the state space 

represented by 6400 dimensions.  For this reason, 
dimension reduction using Principle Component 
Analysis (PCA) (Zito et al, 2008) was performed on 
the training dataset.  As a result, 11 eigenvectors 
were found that account for 90% of the variance of 
the data. By projecting the training and testing data 
onto these eigenvectors, the dimension of the data 
are reduced: the data were projected from a 
2677x6400 element matrix to a 2677x11 element 
matrix.  

This dimension reduction allows for the 
separability of the two classes to be inspected. To 
do this, the principle components were first 
generated for each image.  All images with an eye 
and all those without an eye were then averaged. 
Figure 2 (a) shows resulting mean principle 
components for the “Eye-Absent” and “Eye-Present” 
classes. Several of these principle components 
show a clear separation between the two classes. 
Figure 2 (b-d) show eigenvectors 0 (b), 1 (c), and 3 
(d) which provide the best separation as seen on 
Figure 2 (a). 

 
 

 
 

Figure 2. (a) Mean principle components for the “Eye-Absent” and “Eye-Present” classes.  Eigenvectors 0, 1 and 
3 seem to separate the two classes the best. (b-d) Eigenvectors produced from the IR dataset.  Eigenvector 0 
(top), eigenvector 1 (left), eigenvector 3 (right). 
 
 

a) b)
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4. QUADRATIC DISCRIMINANT ANALYSIS 
 

The training set with reduced dimension was 
used to train a Quadratic Discriminant Analysis 
(QDA) implementation (Zito et al, 2008). Among the 
many machine learning algorithms available to 
perform classification, QDA was selected primarily 
for its relative simplicity. Additionally, the output of 
the algorithm can be used to generate a confidence 
measure for each classification. The schematics of 
using QDA algorithms for training and classification 
are shown on Figure 3. 

Estimated classifications were then generated 
for each of the images in the testing set. To perform 
training, the dimension reduced IR images together 
with the subjective classification, which are 
considered to be truth, were used as an input to the 
QDA. To perform classification, each IR image was 
used as an input to QDA, and the algorithm 
produced an estimated classification. These 
estimated classifications were then compared to the 
subjective classifications to measure the error. 
Further work will be performed to produce 
confidence measures. 

 
 

 
 

 
Figure 3: Once trained, the QDA implementation 
can be used to perform classification on new 
images not belonging to the training set. 
 
 

  
 
Figure 4.   Average probability that an image will be 
correctly classified. 
 

5. PRELIMINARY RESULTS 

 In order to gain an accurate view of how well the 
eye-detection algorithm performs, the estimated 
classifications obtained with QDA were compared to 
the previously generated subjective classification 
performed by the TAFB at NHC. To ensure that the 
accuracy of the algorithm was not an anomaly 
bound to a particular shuffling of the original data, 
the algorithm was run 1200 times.  Each time the 
input data was shuffled and then partitioned into 
different training and testing sets. Figures 4 and 5 
show the accuracy and error statistics averaged 
over all of these runs. Figure 4 shows that, on 
average, roughly 75% of the images were correctly 
classified. Images with eyes in them were correctly 
classified approximately 78% of the time, and 
images without eyes were correctly classified about 
72% of the time.  Figure 5 illustrates that, on 
average, 28% of the images without eyes were 
incorrectly classified (False Positive).  Additionally, 
roughly 22% of the images with eyes were 
incorrectly classified (False Negative). 

 
 

Figure 5.   Average probability that an image will be 
incorrectly classified. 

6. CONCLUSIONS AND FUTURE PLANS 

Further work will be performed to determine 
which cases the algorithm performs poorly on.  In 
addition, different intensity thresholds will be 
examined as the 50-knot intensity threshold is a 
relatively low for eye formation in IR imagery as 
shown in Vigh et al. (2012).  Additional data (e.g., 
vertical wind shear) may also be added to the input 
and confidence intervals will be added to the output.  
It is also desirable to create probabilistic estimates 
of eye formation using similar information.  

One primary goal of this work is to add 
automated classifications and/or probabilities to the 
input of statistical-dynamical intensity forecasts to 
determine whether this information improves the 
accuracy of the forecast.  The eye detection 
estimates may also be used as input to an 
automated center-fixing routine that is currently 
under development. Finally, the possibility of 
improving the results with the use of high-resolution 
VIIRS imagery will also be investigated.   
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DISCLAIMER:  
The views, opinions, and findings contained in this 
article are those of the authors and should not be 
construed as an official National Oceanic and 
Atmospheric Administration (NOAA) or U.S. 
Government position, policy, or decision. 
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