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1 INTRODUCTION 
 
            Land surface models are important 
  components of numerical weather prediction 
(NWP) models, partitioning incoming energy into 
latent and sensitive heat fluxes that affect 
boundary layer growth and 
destabilization.  During warm-season months, 
diurnal heating and convective initiation depend 
strongly on evapotranspiration and available 
boundary layer moisture, which are substantially 
affected by soil moisture content.  Therefore, to 
properly simulate warm-season processes in 
NWP models, an accurate initialization of the 
land surface state is important for depicting the 
exchange of heat and moisture between the 
surface and boundary layer.  The ultimate goal 
of this study is to improve numerical weather 
forecasts by providing more accurate soil 
moisture boundary conditions from a land 
surface model.  Toward that end, we assimilate 
soil moisture retrievals from the Soil Moisture 
and Ocean Salinity (SMOS) radiometer into the 
Noah Land Surface Model via an Ensemble 
Kalman Filter.  
 
2. Models and Data 
 
2.1 LIS 
 

 The NASA Land Information System 
(LIS, Kumar et al. 2006; Peters-Lidard et al. 
2007) is a modeling framework for running land 
surface models and conducting land surface 
data assimilation (Kumar et al. 2008; Kumar et 
al. 2009).  To facilitate intercomparisons, users 
may select land surface models, forcing data 
sources, landcover and soil type data sources, 
and many other parameters. The Short-term 
Prediction Research and Transition (SPoRT) 
Center at NASA/MSFC uses LIS to produce real-
time soil moisture products for situational 
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awareness and local NWP over the 
southeastern CONUS and East Africa (Case and 
White 2014; Case et al. 2014).  These products 
are shared with Weather Forecast Offices and 
other users.  Model output can be used to 
monitor and/or predict several phenomena 
including drought, fire, extreme heat, flooding, 
convective initiation, and water-borne diseases. 
 
2.2 SMOS and SMAP 
 
 The SMOS satellite, launched in 2009 
by the European Space Agency, carries a 1.4-
GHz synthetic aperture radiometer which can be 
used to retrieve soil moisture with a resolution of 
35-50 km and a volumetric accuracy of 4%.  Due 
to the lower-frequency observation channel, 
SMOS retrievals are more sensitive to soil 
moisture and can be made in more highly 
vegetated areas than previous instruments such 
as AMSR-E. 
 NASA launched the Soil Moisture 
Active/Passive (SMAP) mission in January 2015 
(Entekhabi et al. 2010).  The SMAP satellite 
carries a 1.41 GHz radiometer which has similar 
resolution and accuracy to SMOS (although it 
uses a conventional dish rather than a synthetic 
aperture) and a synthetic aperture radar 
operating at 1.2 GHz.  The radar can be used to 
retrieve surface soil moisture with a horizontal 
resolution of ~3 km.  A combined active/passive 
product with intermediate resolution at 9 km will 
also be available (Das et al. 2011).  NASA 
SPoRT is part of the SMAP Early Adopters team 
(Brown et al. 2013), and plans to assimilate the 
blended SMAP product when these data 
become available operationally. 
 
3. Soil Moisture Data Assimilation 
 
 We have adapted LIS to assimilate 
Level 2 Soil Moisture User Data Products from 
the ESA into the Noah version 3.2 land surface 
model (Ek et al. 2003) using an Ensemble 
Kalman Filter (Blankenship et al. 2014).  Kalman 
filtering is a data assimilation method that   
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Figure 1.  Soil moisture data assimilation case 
from 1 April 2013: a) Model background 0-10 cm 
soil moisture (cm3/cm3); b) SMOS soil moisture 
retrieval; and c) 0-10 cm soil moisture analysis. 

combines a forecast (background) with 
observations (soil moisture retrievals, in this 
case) to generate an improved estimate of a 
model variable.  A Kalman Filter calculates an 
optimal weighting between the background and 
the observation.  The EnKF uses the spread of 
the ensemble to represent the forecast error 
covariance.  Within LIS, data are screened for 
radio frequency interference, frozen soil, 
snowcover, falling precipitation, heavy 
vegetation, and other data quality flags.  

 An example of the assimilation process 
is shown in Figure 1.  Panel a depicts the 0-10 
cm soil moisture from the model at 0000 UTC 1 
April 2013, prior to any assimilation.  Panel b 
shows the observations (retrieved SMOS soil 
moisture) valid at the same time.  In this 
particular case, there is a very prominent soil 
moisture feature in the retrievals in the lower 
Mississippi Valley, likely due to rice irrigation.  
The feature coincides closely with previously 
identified irrigated and rice-growing areas 
(Figure 2).  Since irrigation is not present in the 
precipitation forcing used to drive LIS-Noah, the 
modeled field lacks this feature.  Panel c depicts 
the analysis, which combines the model 
background and the observations, and which 
now shows the moist soils within the area under 
irrigation.     
 
a)

 
b) 

 
Figure 2.  a) University of Frankfurt/FAO map of 
irrigated areas (from Ozdogan and Gutman 
2001), and b) 2013 USDA map of rice 
production by county (National Agricultural 
Statistics Service 2015). 
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3.1 Bias Correction 
 
 We apply a bias correction to the SMOS 
retrievals using a Cumulative Distribution 
Function (CDF)-Matching technique (Reichle 
and Koster 2004), with a separate correction 
curve calculated for several broad land cover 
categories (Blankenship and Crosson 2011).   
 
a)

 
b)

 
Figure 3. a) Cumulative Distribution Functions 
(CDFs) of SMOS retrieved surface soil moisture 
(solid curves) and modeled 0-10 cm soil 
moisture (dashed curves) for 6 landcover types, 
for a southeastern US domain.  b) Correction 
curves derived from the CDFs. 

Figure 3a shows the CDFs for soil moisture for 
both model (control run with no data 
assimilation; dashed curves) and observations 
(uncorrected satellite retrievals, solid curves) for 
six land cover types, generated from a model 
run and observations from March 1 to October 1 
of 2013 over the experiment domain.  The 
resulting correction curves are shown in Figure 
3b.  These curves are used to adjust an 
observation to an equivalent model value.  The 
intent is to preserve the observations' 
information content regarding spatial patterns 
and relative values while not changing the 
model's soil moisture climatology.  The 
observations are drier on average so the mean 
correction is a moistening of the signal.  The 
observations also have a larger dynamic range, 
with values up to 1.0 volumetric soil moisture 
being allowed.  This was an intentional choice 
by ESA to preserve the signal in flooded areas 
(Arnaud Mialon, personal communication, 10 
April 2014).  
 
3.2 Model Configuration 
 
 Three separate ensemble runs of the 
Noah 3.2 LSM were performed within LIS for the 
period of 1 Feb. 2011 to 1 Jun. 2011, on a 3-km 
domain in the southeastern United States.  
These simulations were all initialized with a one-
year spinup from 1 Jan. 2010, followed by a 
one-month ensemble spinup (applying 
perturbations) during January 2011.  The 
ensembles each consisted of 32 members 
generated by perturbing 4 state variables (4 
layers of soil moisture), and 1 observation 
variable (SMOS soil moisture).  The three runs 
were 1) OPL:  an open loop control run, with no 
assimilation, 2) DA:  an uncorrected SMOS data 
assimilation run, and 3) DA+BC:  a SMOS 
assimilation run with bias correction.  This setup 
allows us to separately assess the results of the 
assimilation of the uncorrected observations and 
of the bias correction.  The SMOS satellite is a 
polar orbiter, so there are at most 2 passes per 
day available for assimilation at mid-latitudes 
(sometimes fewer due to gaps between swaths).  
For this domain, the assimilation took place at 
the 0000 and 1200 UTC timesteps.   
 For all cases, the Noah model was run 
with a 30-minute timestep and configured with 
the IGBP MODIS landcover database (Hansen 
et al. 2000) and the STATSGO soil database 
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(Miller and White 1998).  It was forced with 
temperature, humidity, winds, and incident 
radiation at the surface from the Global Data 
Assimilation System (GDAS; Wu et al. 2002; 
NCEP EMC 2004) and precipitation from the 
North American Land Data Assimilation Phase 2 
(NLDAS2; Xia et al. 2012).  Green vegetation 
fraction was derived from daily MODIS data 
(Case et al. 2014).   
 
3.3 Results 
 
 Modeled soil moisture was validated 
against in situ observations from the North 
American Soil Moisture Database obtained from 
Texas A&M University (Ford and Quiring 2012).  
112 stations within the domain were chosen, 
after screening out stations with limited 
variability and excessive periods of saturation in 
the in situ data.  Time series from two of these 
stations are shown in Figure 4, along with 0-10 
cm layer soil moisture at the same location from 
the three model runs.  Results from the New 
Hope station in north Alabama (panel a) reveal 
that the DA run better captures the full dynamic 
range of drying compared to the OPL run, with  
 
a)

 
b)

 
Figure 4. Time series of in 5 cm in situ soil 
moisture (black) and modeled 0-10 cm soil 
moisture at same point from 1 Feb 2011 to 1 Jun 
2011.  a) New Hope, AL.  b) Champaign, IL. 

Table 1.  Statistics from 112 stations in the 
southeastern US, verified against the North American 
Soil Moisture Database for the period 1 Feb 2011 to 1 
Jun 2011, for three model runs:  open loop, SMOS 
data assimilation (DA), and SMOS data assimilation 
with bias correction (DA+BC). 
Experiment Open 

Loop 
DA DA+BC 

Bias -2.2% -3.3% -2.8% 
Err. Std. 
Dev. 

9.0% 9.2% 9.0% 

Correlation 0.59 0.62 0.63 
 

the DA+BC run in between.  The second case 
from Champaign, IL (panel b), has a large initial 
bias, perhaps due to inconsistent soil properties 
between the site and the model grid cell.  In this 
case, it appears that the two data assimilation 
runs better capture the dry periods in the second 
half of the run.  For this station, there is a large 
improvement in correlation coefficient (Pearson 
r) from 0.62 for OPL to 0.84 for both data 
assimilation runs. Aggregate statistics from all 
112 stations (Table 1) indicate a small increase 
in bias for the DA only run, which is lessened in 
the DA+BC run, and a small improvement in 
average correlation from 0.59 for OPL to 0.62 for 
DA and 0.63 for DA+BC. 
 
4.  NWP INITIALIZATION EXPERIMENT 
 
4.1 Model Configuration 
 
 The ultimate goal of this research is to 
improve numerical weather forecasts by 
initializing an NWP model with more accurate 
surface soil moisture fields.  We used the output 
of the three LIS runs—open loop (OPL), data 
assimilation (DA), and data assimilation with 
bias correction (DA+BC) LIS—to initialize 
forecasts from the Weather Research and 
Forecasting (WRF) NWP model, beginning on 1 
Jun 2011, for the same 3-km southeastern US 
domain.  Initial conditions for the atmosphere 
were taken from the North American Model 
(NAM) operational run. This area was chosen, in 
part, because of the large soil moisture 
anomalies due to rice irrigation discussed in 
section 3.  It is hypothesized that the relatively 
large changes in soil moisture over the lower 
Mississippi Valley between the two runs will 
have significant impacts on evapotranspiration, 
diurnal heating, and convective initiation.
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a)                 Open Loop                                       DA                                            DA+BC 

 
b)     

 
c)   

 
d)          

 
Figure 5. a)Initial 0-10 cm soil moisture, and 48-hr forecasts of b) 2-m temperature, c) 2-m dewpoint, and 
d) surface-based CAPE for OPL (left), DA (center), and DA+BC (right) runs. 
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 Figure 5a shows the initial 0-10 cm 
volumetric soil moisture for all three model runs.  
The DA run is noticeably drier, with the 
exception of an area of increased moisture along 
the lower Mississippi River.  By design, the 
DA+BC run closely matches the OPL run in a 
mean sense, but it retains the enhanced 
moisture near the Mississippi River, and overall 
has a weaker north-south moisture gradient 
compared to the OPL run. 
  
4.2 Results 
 
 Results from a 48-h forecast initialized 
on 1 Jun 2011 are shown in Figure 5b-d for 
three different fields.  The DA run, with a drier 
initial surface, has lower 2-m dewpoints and 
increased 2-m temperatures, as expected.  
These changes are mitigated in the DA+BC run, 
but the geographic patterns are still changed. 
The final field shown is the Convective Available 
Potential Energy (CAPE).  There are competing 
effects from the dewpoint and temperature 
changes, but the moisture effect tends to 
dominate, with the drier DA run having reduced 
CAPE overall. However, the DA run does exhibit 
small cells of enhanced CAPE.  While we cannot 
yet say if these patterns are more accurate, it 
does illustrate that the initial surface moisture 
conditions can impact the evolution of the model, 
including the development of convection (not 
shown).  We plan to evaluate both the sensitivity 
and the accuracy of the weather forecasts, 
validating forecasts against station and upper-air 
observations over a longer time period, and by 
investigation of selected case studies.   
 
5.  SUMMARY AND FUTURE WORK 
 

The NASA SPoRT Center has 
implemented the assimilation of soil moisture 
retrievals from the SMOS satellite within the 
Land Information System.  A bias correction 
using a CDF-matching technique, stratified by 
vegetation class, has also been developed.  
Preliminary validation against the North 
American Soil Moisture Database indicates an 
improved correlation of model time series of soil 
moisture for both the uncorrected and corrected 
data assimilation runs.  LIS output from data 
assimilation runs was used to initialize 48-hr 
forecasts in WRF.  The changes in initial surface 
conditions led to model changes in 2-m 

temperature and dewpoint as well as CAPE.  We 
plan to investigate the WRF forecasts to assess 
both the sensitivity to using SMOS observations 
in this manner, and the accuracy of the different 
experiments (no assimilation and assimilation 
with and without bias correction).  We also plan 
to assimilate SMAP data when they become 
available, and to assess the impact of SMAP on 
NWP forecasts.  After validation, the data 
assimilation will be implemented in SPoRT's 
near-real-time LIS modeling efforts. 
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