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1. INTRODUCTION 

 
NOSIA-II traces hundreds of products and services 

paths down NOAA’s value tree that quickly become 
complex. 
 

 
Figure 1 

 
Fig. 1 above illustrates the top end of one of those 

paths up the value tree. GOES, at the right edge is one 
of 62 observing systems and other data sources feeding 
into the Rapid Refresh Model,  

 which is used for local thunderstorm prediction, 

 which is among more than a dozen data sources 
feeding into the National Weather Service's Severe 
Thunderstorm Warning product, 

 which is among a dozen Key Surveyed Products 
feeding into the Severe Weather Mission Service 
Area, 

 which is among 11 Mission Service Areas feeding 
into the NWS’s Weather Ready Nation Goal, 

 which is among 4 Goals feeding NOAA’s 
overarching mission. 
 
The mathematical relationships among the purple 

boxes are quite simple: they are linear, many to one, 
and they use simple weighting and averaging. The real 
complexity happens among the tiers in the model 
represented by these blue boxes. 
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Figure 2 

 
A description of the molecular level of the model 

serves to illustrate how this complexity originates. First, 
PALMA™ functionally relates a data source (what we 
call and option) to a product using these three scores: a 
status quo score, a swing weight, and an overall 
satisfaction score. By aggregating data sources one at a 
time, you can see it grows geometrically. 
 

PALMA™ computes the impact that an option or 
intermediate product has on the product by using a 
function called the Interval-Preserving Symmetric 
Extended Average Power Function (IPSEA-P).  It's 
based on Russell Steinman's interpolation scheme. This 
function is able to not only determine the individual 
impact a data source has on the product but also the 
synergy multiple data sources working together have on 
the product. PALMA™ functionally relates every 
molecule of the Value Tree's full DNA. It then searches 
for the most "benefit-retaining" portfolio of observing 
systems under increasing budget constraints. PALMA™ 
then sorts these budget-constrained portfolios. This is 
illustrated below in what we call the Efficient Frontier. 
  

 
Figure 3 

 
Each point on the line represents an entire portfolio 

of observing systems: the vertical axis indicates the 
NOAA-wide benefit of the portfolio, and the horizontal 
axis indicates the portfolio's cost. The red point on the 
end of the line represents NOAA's current portfolio, 
budget, and benefit score with respect to what we 
surveyed in NOSIA-II. This one red point, in fact every 



point on the line, compresses an incredible amount of 
information. We in TPIO are highly motivated to get a 
handle on this information (or this complexity). There is 
much to infer from this single red point. 
 

 
Figure 4 

 
2. GOING DEEPER 

 
The chart in Fig. 4 zooms into the first $200M of 

observing portfolio budget cuts NOAA might consider 
and then decomposes the budget into individual Goal 
benefit scores for each budget profile. This kind of view 
tells us how much benefit each Goal looses with 
increasingly budget-constrained portfolios.  
 

 
Figure 5 

 
The chart in Fig. 5 examines how much of that 

budget constraint is a burden to each Goal.  In the 
current model configuration for example we see that 
there is some give and take managed by each Goal for 
the first $75M but then bifurcates and one of the Goals 

begins taking the brunt of the budget cuts. Indicators 
like this inform us of where the budget may become 
more sensitive to the decision making process.  
 

Looking backward, the Efficient Frontier has 
compressed the complexity of the Goal impacts, which 
is what NOAA's decision maker's need from the TPIO 
office.  They need the problem reduced. There is a great 
deal more functionality we can derive from the Efficient 
Frontier in addition to examining budget restrictions. 
With NOSIA-II, we can also examine  

 Budget restrictions, 

 Investment redistributions for things like trades 
among observing systems as a data source for 
a particular product,  

 Investment in new observing systems, or  

 Investments in performance enhancements in 
current observing systems.  

 
3. NOSIA-II’S METRIC SPACE 

 
PALMA's Efficient Frontier serves to compress this 

complexity into a more manageable decision space but 
we can't lose sight of the complexity. NOSIA's metric 
space can provide insight into more than the two 
dimensions of Budget and Benefit (Value Tree Impact) 
imply. Other dimensions include Policy, Performance, 
Inter-Dependence, Economic Impact, as well as multi 
period (time) and integration with the larger earth 
observing enterprise. 
 

We've begun examining optimization among budget 
and benefit, but what about optimization in these other 
dimensions? Each dimension represents a decision-
relevant degree of freedom in NOSIA's information 
space.  
 

Changes in Policy can dramatically affect the 

relevance of an observing system because policy 
controls which products and services have the highest 
priority, which in turn influences the relevance of the 
observing systems those products and services rely on. 
 

Changes in Performance can affect the relevance 

of an observing system and the budget. NOSIA may be 
able to tell us if investment dollars for continued 
maintenance or enhanced capability would have a 
greater return on investment for one observing system 
over another. 
 

Changes in Inter-Dependence can dramatically 

affect the relevance of an observing system. Those 
observing systems that support more than one of 
NOAA’s products and services synergistically cumulate 
impact. On the other hand, isolating the relevance of an 
observing system to only a few products may give 
resilience to NOAA as a whole if the removal of an 
observing system from the portfolio affects only a few 
minor products. 
 

Changes in Economic Impact can dramatically 

drive Policy or focus NOAA’s budget for improvements 



or maintenance. We hope to soon have the ability to link 
NOAA’s mission service areas, which are modeled in 
NOSIA, to components of the national economy, and 
when we do, policy, budget, and performance decisions 
regarding the portfolio of observing systems will be 
made to enhance the national economy. 
 

And… these dimensions don’t even include 
variation over time, or synergies among the global 
network of observing capability portfolios including those 
funded by other federal agencies such as DoD and DoI, 
state and local, international, and commercial providers.  
 
3.1 NOSIA-II’s Metric Space: Cost and Impact 

 
A closer look at the Budget (cost) and Benefit 

(impact) metric space starts with examining the 
distributions of cost and impact. 
 

 
Figure 6 

 
The charts in Fig. 6 show the distribution of cost 

and impact for the untransformed data and the log 
transformed data.  We developed a method of 
categorizing cost and impact categories that would 
compress some of this information for decision makers. 
We use the categories you see above. The distributions 
of the data are logarithmic so we transformed them for 
correlation analysis. 
 

 
Figure 7 

 
Before beginning a correlation analysis, it's a good 

idea to look at how the data behave together. Fig. 7 
illustrates un-transformed data which bunches up in the 
lower left of the graph. There isn’t much information 
here but there must be more to see because the cost, 
impact, and efficiency scores vary by 4 or 5 orders of 
magnitude so it's necessary to see the log-transform to 
the data. 
 

 
Figure 8 

 
This is how the log-transformed data appear with 

an addition layer of information. Circle sizes are scaled 
by an index called "Efficiency", which we compute as 
the ration of cost to impact. This index represents 
investment efficiency with larger circles less efficient 
than smaller circles. It makes it easier to find observing 
systems that we should give a closer look in a budget 
constraint situation (under the red curve). There is a 
visible bias in these data: generally, as cost goes up, so 
does impact but cost is not strictly related to impact 
because you can obviously have high impact systems at 
low cost.   
 

Looking at a scatterplot is not enough, so we need 
to do some correlation estimates. One method of 
estimating correlation for a sample is to assign each 
member of a sample its own dimension. This results in a 
multi-dimensional vector that represents the sample. I 
can create such a vector for the cost data and one for 
the similarly ordered impact data. Correlation then 
becomes the angle between the two vectors.  
  

One feature of the sorted log-transformed impacts 
is that it produces a straight line.  This implies that the 
distribution of impacts is not normal. In other words, 
equal bin sizes for impact ranges would produce a flat 
histogram. Because of this, we used an approach called 
Spearman's Rank Correlation, which is a non-
parametric (rank-based) method that doesn't depend on 
the normal distribution assumption or on statistical 
parameters to find correlation between cost and impact. 
 



 
Table 1 

 
Spearman's correlations range between +1 to -1 

and can be interpreted to be equivalent to the cosine of 
the angle between the two vectors (high correlation has 
a small angle between them and low correlation 
approaches a right angle or worse). To simplify an 
interpretation of the correlation analysis, we created 
arbitrary categories for correlation by simply dividing the 
relevant part of the correlation range into five equal 
segments. 

 

 
Figure 9 

 
This is the correlation between cost and impact for 

NOAA. For NOAA, correlation is "moderate to strong". 

Fortunately, investment is not negatively correlated or 
uncorrelated. There is a positive correlation between 
impact and cost, but we need to keep in mind that there 
is uncertainty in our cost data and there is uncertainty in 
impact scores.  We are working now to characterize 
uncertainties on these correlations.  
 

 
Figure 10 

 
We also extended this analysis to the Goals by 

extracting the Goal-relevant components of the 
correlation. Here, correlation among the Goals weights 
an individual option's cost according to its impact on the 
goal. This was to eliminate unfairness in carrying the full 
cost of a system to each Goal whether they depended 
on it or not. Because investments were done in the past 
without the benefit of objective impact measurements, 
the result implies NOAA indeed considered impact in 
their observing system investment decision-making. The 
Goal subsets extracted from the NOAA data all have 
higher correlations than the whole sample. This implies 
that the Line Offices are individually driving NOAA-wide 
purchases to benefit their Goals. Moving forward by 
actually measuring impact gives us a measurement for 
improvement and success. We believe that a truly 
optimized portfolio would have a clear "strong" or "very 
strong" correlation. 

 
Another way of looking at NOSIA's cost and impact 

relationship is to examine how much information in the 
relationship is available to a decision maker. The tool 
we've selected follows from Information Theory, which 
provides a metric called "Entropy". We define Entropy in 
the context of decision-making: Entropy is the amount of 
information the decision maker lacks prior to learning 
the outcome of a decision; i.e., "I'm going to invest in an 
observing system, but I don't know how much impact it 
will have." Entropy is a measure of uncertainty or 
unpredictability. It is also a measure of information 
content. Claude Shannon developed a mathematical 
approach to measuring it with the unit of measure called 
the "bit" (binary digit), which is in wide use today.   
 

 
Figure 11 

 
It is our goal to inform NOAA’s leadership to help 

them make the most beneficial decision. We can use 
entropy to describe the breadth of the decision context if 
we can adequately state what the context is. In this 
case, I describe the context of the decision as "How can 
I make investments in my observing systems 
equilibrated with its impact?" In other words, if you were 
a decision maker, you want to invest most energetically 
in observing systems that have high impacts on NOAA 
and you want to invest less if the impacts are not very 
substantial. Entropy can serve as a NOAA-wide 
objective measurement to characterize our observing 
system acquisition decision space. 
 

In this figure, we've computed Shannon's Entropy 
for NOAA's distribution of cost and impact. This metric 
helps me define the range of entropy that can potentially 
exist in our portfolio of observing systems. It has a 
maximum value (based on an assumption of random 
correlation) and a minimum value (based on an 
assumption of all impact and cost ranking categories 
highly correlated).  
 

From this measurement, we've found that each 
impact and cost category relationship has a range of 
4.91 bits to 2.32 bits. Our measurement of the amount 
of entropy existing in the NOSIA-II data implies that 
even without the benefit of an impact analysis, NOAA's 
leadership has successfully managed about half of the 
uncertainty.  We think that with NOSIA's information 
now available, we can close the gap even further.  



 
3.2 NOSIA-II’s Metric Space: Policy, Impact, and 
Inter-dependence 

 
What about other dimension's in NOSIA's metric 

space such as Policy and Inter-Dependence (inter-
connectivity)? This is a 3-D scatterplot of observing 
system rank (Policy), impact (Benefit), and 
interconnectivity (Inter-Dependence). Scatterplots in 3-D 
are a little more difficult to visually inspect, but we can 
infer some important features in this data set. 

 
Figure 12 

 
Here is a view from inside the box. The top face of 

the box (the high ranking observing systems) shows a 
great accumulation of high impact and high 
interconnectivity. The data are attracted to the low inter-
connectivity face and to the low impact face. These are 
biases in the data. However, as ranking goes up toward 
the top face of the box (the high ranking observing 
systems), the data show a bias toward both high impact 
and high interconnectivity. 
 

 
Figure 13 

 
This is a graph of NOSIA's entropy measurements 

for these dimensions (Policy, Benefit, and Inter-
Dependence) as it varies with sampling scale. In these 
dimensions, NOAA has successfully navigated only 
20% of the complexity of the value tree. 
 

The interconnectivity of NOAA's products and 
services provides more avenues for transmitting the 
benefit of observations throughout the value tree than a 
"stovepipe" observing system/product branch of the tree 

would. A stovepipe observing system/product branch 
can have very high impact in our value tree (and 
appears budgetarily secure) as long as the product that 
depends on it has high policy ranking. If for instance a 
specific climate or air quality product relied on only a 
few niche observing systems, and if climate and air 
quality are politically sensitive, then those observing 
systems would be politically vulnerable.  

 
Increasing inter-dependence throughout the value 

tree has the effect of increasing an observing system's 
impact when you remove it from NOAA's observing 
system portfolio. Inter-dependence is a double-edged 
sword: it synergizes products and services, but it also 
makes them more vulnerable to impact from a single 
observing system failure. Less inter-dependence and 
more duplication is unacceptable in a budget-
constrained environment. If NOAA's decision makers 
articulate this objective, then we can measure the 
entropy or the complexity of the model to answer that 
objective. 
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