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1. Introduction 
 

Schneider Electric delivers a numerical 

Enhanced Flight Hazard (EFH) turbulence 

product (Lennartson and McCann, 2014) that 

can be used for both flight planning 

(Strategic) as well as flight-following 

(Tactical) use.  It is very important that an 

aviation turbulence forecast show reasonable 

accuracy spatially, temporally, and 

quantitatively to be a credible source for 

operational flight decision support.  Shown 

in this document will be a volume evaluation 

of the EFH product to test its credibility in 

operational use by comparing it with 

turbulence observations and with verification 

of another well recognized numerical 

turbulence forecast, the Graphical 

Turbulence Guidance (GTG); Version 2.5, 

Sharman et al., 2006).  The EFH and GTG 

approach turbulence forecasting very 

differently.  The EFH is a deterministic 

forecast, and GTG is a weighted ensemble of 

diagnostic forecasts.   

 

Verification was conducted by AvMet 

Applications, Inc. (AvMet). An analysis of 

EFH and GTG forecasts was conducted using 

data for a three month period from August 

2014 to October 2014.   

 

In the following sections, the Schneider 

Electric EFH forecast system will be briefly 

described; the verification methodology 

explained; the verification results and 

analysis shown; and finally, the conclusions 

and direction of future work are presented. 

2. Description of the EFH 

turbulence forecast 
 

The EFH numerical turbulence forecast is a 

deterministic forecast derived from a 

numerical weather prediction model.  The 

forecast is model agnostic and focuses on 

four primary sources of turbulence: mountain 

wave, boundary layer, upper-level clear air, 

and convective turbulence.  Output from all 

modes is integrated into one eddy dissipation 

rate (EDR; Cornman et al., 1995) value, the 

rate at which turbulent energy dissipates into 

the atmosphere.  Figure 1 shows 



conceptually how the forecast turbulence 

sources can change throughout a flight path 

and where they can potentially be enhanced 

where two or more sources are present at a 

given point at a given altitude. 

 

 

 

Figure 1:  Conceptual model featuring the 

four modes of the turbulence forecast: 

mountain wave, boundary layer, upper level 

clear air, and convective.  Also illustrated is 

the integration of the modes where 

constructive interference can enhance 

turbulence. 

 

2.1 Mountain Wave 

 

The mountain wave component of the 

turbulence forecast calculates the turbulence 

potential of waves breaking over high terrain.  

This calculation takes into consideration the 

attributes of the mountain(s) such as 

asymmetry and concavity as well as the wind 

direction at the mountain top level.  Also 

included are the effects of a hydraulic jump 

and the reflection/resonance of terrain-

induced mountain waves (McCann, 2006). 

 

2.2 Boundary Layer 

 

Boundary-layer turbulence results from the 

interaction of the lower atmosphere with the 

earth’s surface. The turbulence values are 

calculated from the surface to the variable-

from-point-to-point top of the boundary layer 

defined as where boundary-layer EDR 

becomes zero (McCann, 2001). 



 

 

2.3 Upper-Level Clear-Air Turbulence 

 

 

Upper-level Clear-Air Turbulence (CAT) is 

computed by applying Lighthill-Ford 

spontaneous imbalance theory to identify 

gravity waves that locally alter the 

environment’s wind shear and stability.  The 

altered state may be enough to lower the 

Richardson number to less than 0.25 thus 

initiating Kelvin-Helmholtz instability (Knox 

et al., 2008).      

2.4 Convective 

 

The convective turbulence component 

computes the turbulence related to vertical 

motions within convective clouds. This 

component is proportional to the 

updraft/downdraft strength (Byers and 

Braham, 1949). Furthermore, there are two 

additional thunderstorm features that are 

taken into account in the turbulence 

computation, gravity waves emitting outward 

from storm updrafts and the mountain wave-

like turbulence associated with overshooting 

thunderstorm tops (Lennartson and McCann, 

2014). 

 

 

 

 

 

 

Figure 2: Observation 1 is an example of a 

rejected sample and observation 2 is an 

example of an accepted sample.  The solid 

light blue lines represent EFH levels and 

dashed light green lines represent GTG 

levels. 

 

3 Verification Methodology 
 

 

Forecasts were validated against 121,576 

EDR turbulence observations from 

commercial airlines over a span of 68 days 

from August 2014 to October 2014.  The 

forecasts were validated over the common 

EFH and GTG forecast lead times of 1, 2, 3, 

6, 9 and 12 hours.  Sampling from the 

forecasts was defined horizontally as the 

average EDR forecast value within a 50 mile 

radius of each observation.  Vertically, 

samples were defined as a mutual forecast 

level from EFH and GTG within 1 kft of the 

observation (Figure 2).   

 

All null values for both products were 

considered as EDR values of 0 forecast (i.e., 

no turbulence), and both forecast datasets 

were treated as direct representations of 

observed in-situ EDR values.    

 

         



4 Verification Approach and 

Definitions 
 

A combination of three methods to analyze 

the forecasts are used: a contingency table 

showing the correlation between forecast and 

observed EDR values, graphs showing daily 

statistics, and summary tables showing all 

relevant statistics from both forecast models.   

 

The contingency table shows counts of 

forecast EDR versus observed EDR in 

discrete bins (Figure 3). Ideally, forecasts 

and observations are perfectly correlated and 

all data lie along the diagonal of the table. 

Off-diagonal elements indicate conditional 

biases in the forecasts. 

 

 
 

Figure 3: Ranges of forecast turbulence 

versus observed EDR values where dark 

green boxes are perfect hits, red boxes are 

misses, yellow boxes are under-forecasts, 

and oranges are over-forecasts. 

 

Cells in the table are classified into four 

categories: “perfect” hits, under-forecasts, 

over-forecasts and misses. The respective 

definitions for each box represented in Figure 

3, and the color coding applied to each, are 

given below:  

 

Condition for Perfect Hit (dark green): 

Case 1:  

(Observed EDR > 0.1) AND  

(Forecast EDR – Observed EDR ≤ 0.1)  

 

Case 2:   

(Observed EDR ≤ 0.1) AND  

(Forecast EDR ≤ 0.1) 

Condition for Over-forecast Hit (orange):  

(Observed EDR > 0.1) AND  

(Forecast EDR – Observed EDR ≥ 0.2)  

 

Condition for Under-forecast Hit (yellow):  

(Observed EDR > 0.3) AND 

Forecast EDR > 0.1) AND 

(Observed EDR – Forecast EDR ≤ 0.1) 

 

Condition for False Alarm (red): 

(Observed EDR > 0.1) AND 

(Forecast EDR ≤ 0.1) 

  

From the data in the table, summary statistics 

can be derived to measure performance such 

as: perfect hit rate, over-forecast rate, under-

forecast rate, overall hit rate, false alarm rate, 

and false alarm ratio and are defined below: 
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Figure 4: Summary Statistics Table showing 

all relevant statistics to evaluate forecast 

quality. These statistics include all days from 

the evaluation period for EFH (Schneider) 

and GTG. 

5 Summary of Verification 

Results 
 

Data were analyzed in aggregate and in 

several subsets including by forecast lead 

time, EDR value, and proximity to 

convection. 

Figure 4 in section 4, shows in green that 

EFH has the advantage over GTG 

consistently for false alarm rate and ratio and 

also in perfect hits and overall hits when 

evaluating the entire period.  The reason the 

hits are as elevated as they are is in large part 

because ~85% of the observations used in the 

evaluation are zero.  So in this evaluation 

period, forecasting EDR below 0.1 can make 

a big difference in the overall statistics.   

a) 

 

 

 



b) 

 
Figure 5: 2Hour Lead Time Range of 

Forecast and Observation EDR for a) EFH 

and b) GTG. 

In Figures 5a and 5b, EFH has ~9,000 more 

Perfect Hit nulls than GTG.  To put it in 

perspective, there were only ~8,500 

observations of ≥ 0.1 EDR so forecasting 

EDR <0.1 has a huge impact over a typical 

sample set of observed EDR.  The next 

largest number is the 0.1 EDR misses.  This 

number can be viewed as the cost of getting a 

hit.  From Figures 5a and 5b, for EFH to 

score a perfect 0.1 Forecast EDR to a 0.1 

Observed EDR it took 9,166 misses from 

EFH to attain 2,082 hits.  For GTG, it took 

15,379 misses to attain 2,361 hits. Also note 

that when the opposite is true and there is 

Forecast EDR < 0.1 and Observed EDR ≥ 

0.1, this number is far less than when there 

was Forecast EDR ≥ 0.1 and Observed EDR 

= 0 (i.e., a miss).  That shows us both models 

tended to significantly over-forecast.   

Also noteworthy is the benefit EFH has by 

having a convective algorithm included in its 

turbulence forecast suite.  When categorized 

as non-convective versus convective (i.e., 

convection within 50 miles), the statistics 

heavily favor EFH when convection is 

present and the forecast EDR ≥ 0.2 (Figure 

6).  Proximity to convection was determined 

by identifying National Convective Weather 

Diagnostic (NCWD) VIP Level 3-or-greater 

cells within 50 miles of an EDR observation. 

a) 

 

 

 

 

 

 

 

 

 

 



b) 

 

Figure 6: Summary Statistics Table showing 

all relevant statistics where forecast EDR > 

0.2. Rows in green show where EFH has the 

advantage a) All Days near Convection and 

b) All Days near Convection with Forecast 

EDR ≥0.2.    

As mentioned previously in this section, 

~8,500 have Observed EDR ≥ 0.1.  The 

overall scores for that subset show the 

Perfect Hits that GTG accumulates is directly 

a result of over-forecasting because there was 

a greater coverage of Forecast EDR ≥ 0.1 

than EFH.  The net effect makes the GTG 

Perfect Hit scores higher but they were 

higher at the cost of a higher False Alarm 

Rate.  When analyzing the observed EDR ≥ 

0.3 EDR hits, EFH higher statistical numbers 

show its higher precision with elevated 

turbulence values (Figure 7a-c) at this 

threshold.  Note sample sizes are relatively 

large for EDR ≥ .1 and .2, however decrease 

significantly for EDR ≥.3. 

 

 

 

a) 

 

 

b) 

 

 

 

 

 

 

 



c) 

 

Figure 7: Summary Statistics Table showing 

all relevant statistics where forecast EDR 

a)≥ 0.1, b)≥0.2, and c)≥0.3. Rows in green 

show where EFH has the advantage.      

When evaluating the results from the entire 

study period, the Schneider Electric EFH 

forecasts had higher Hit Rates, averaging 

11% higher, over all forecast periods 

compared to the GTG forecasts.  The False 

Alarm Rates for GTG were on average 14% 

higher than the EFH forecasts (Figure 8).  

 

 

 

 

 

 

 
 

 
 

Figure 8: Top graph shows the comparison 

of Hit Rate between EFH (green) and GTG 

(red).  The bottom graph shows the False 

Alarm Rate between EFH (green) and GTG 

(red). Both graphs represent data from all 

lead times. 

 

Analyses of daily summary statistics over the 

evaluation period shows Schneider Electric 

EFH to be more consistent (i.e., less 

deviation from average) compared to GTG 

with the RMSE error consistently less than 

GTG through the evaluation period (Figure 

9).  This shows the EFH forecast technique 

to be a positive step forward in day-to-day 

consistency for the numerical prediction of 

turbulence. 

 

 



 

 
 

Figure 9: Daily Summary of Results showing 

hits (blue) and misses (red) between EFH 

(top) and GTG (bottom) illustrating GTG’s 

larger deviation from day to day than EFH. 

6 Conclusions and Future 

Work 
 

Schneider Electric has recently deployed a 

numerical deterministic turbulence forecast 

as a part of an Enhanced Flight Hazard 

product suite.  To assess its potential 

operational merit, AvMet was tasked to 

conduct an independent third party 

evaluation of the EFH turbulence forecast.  

This paper presents results from the three-

month evaluation period of turbulence 

forecast information provided by EFH and 

GTG (v2.5) products as compared to EDR 

in-situ observations. Evaluations included 

identifying the accuracy of the products via 

contingency tables showing relationships 

between forecast and observed EDR values, 

graphs showing daily statistics, and summary 

tables presenting relevant statistics from both 

forecast models. Results from the evaluation 

showed: 

 

• For all data, EFH has a consistently 

lower False Alarm Rate compared to 

GTG for all lead times evaluated 

(EFH = 18.5%, GTG = 30.9%) 

 

• For all data, EFH scored higher for 

the ‘perfect Hit Rate’ and overall Hit 

Rate with ~11% improvement over 

GTG noted at all lead times for both 

statistics  

- EFH was also observed to 

have a more consistent 

validation (i.e., lower RMSE 

comparing to Hit Rate on 

average) for all forecast 

periods for all days evaluated 

compared to GTG 

 

• EFH validated higher than GTG 

when there were larger turbulence 

observations (i.e., ≥.1, .2, and .3) 

 

• EFH validated higher than GTG 

within vicinity (50 miles) of 

convection for all thresholds ≥ 0.1 

EDR 

 

 

The validation effort has shown the potential 

merit in EFH turbulence forecast data which 

may offer opportunities for its end users to 

better optimize their routes thus conserving 

fuel, reducing emissions, and help to reduce 

air traffic congestion.  End users will also 

have the benefit of more actionable 

information with higher accuracy where 

dangerous conditions exist. Finally, the user 

of the EFH forecasts will have better 



confidence employing the forecast into 

operations with its smaller variations in 

quality from day to day. 

  

The difference in forecasting approaches 

between the deterministic EFH and 

ensemble-of-diagnostics GTG seems to have 

a lot to do with the deviations in results.  For 

one, ensembles tend to spread variably from 

one weather pattern to the next since the 

ensemble members will agree and disagree 

variably.  The result is more False Alarms 

from the broader coverage, dampening of 

highest values where divergent solutions can 

potentially cancel out each another, and more 

variability in day to day forecast confidence 

depending on daily member convergence or 

divergence.  Also, the application of 

Lighthill-Ford theory as it is implemented in 

EFH turbulence model has good skill. As 

McCann et al. (2012) alluded to, advances in 

gravity wave initiation theories are an area 

that can be improved and could yield positive 

advances in quality on future numerical 

turbulence forecasting.  

 

Future work includes an extended evaluation 

over a year or more to capture several 

complete cold- and warm seasons.   That will 

enable evaluation over a far larger sample 

size and will help highlight seasonal 

performance. It is also desirable to attain 

additional sources of observations to make 

the sample size in future evaluations more 

robust and perhaps expand to areas other than 

the United States.  Future comparisons of 

new versions of GTG or other accessible 

numerical turbulence forecasts with the latest 

version of EFH will continue to be desirable.    
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