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1. INTRODUCTION 

An important aspect in planning for transoceanic 
flights is the acquisition and interpretation of 
forecasts of aviation weather hazards that might 
be encountered along a desired flight path.  
Because of the long distances flown, look-ahead 
times of 24 hours or more are needed for 
planning purposes.  The current ICAO-
sanctioned significant weather forecasts 
(SIGWX) serving this purpose are manually 
generated, with coarse resolution in space and 
time, and deterministic.  The next generation of 
products will likely be gridded and probabilistic 
forecasts, derived from a combination of 
numerical weather prediction (NWP) model 
outputs, possibly generated by different centers 
(e.g., World Area Forecast Center (WAFC) 
London and WAFC Washington).   

Here, we present an effort aimed at leveraging 
multiple global ensemble forecasts to generate 
globally harmonized, probabilistic forecast 
guidance products.  The methodology 
developed will help improve the process of 
predicting significant weather in the strategic 
planning timeframe for transoceanic flights.  
Emphasis in this study is placed on calibration of 
individual models and methods for the 
subsequent fusion of probabilistic forecasts (i.e., 
harmonization).   

Several techniques for the calibration and 
combination of global ensemble models are 
presented, and we show how improvements in 
the harmonized forecast are possible even with 
spatially and temporally varying performance of 
each individual model.   

Perhaps more important than improved forecast  

Corresponding author address: Ken Stone, 
National Center for Atmospheric Research, PO 
BOX 3000, Boulder, CO 80307. Email: 
kstone@ucar.edu 

performance, the approach presented allows 
qualified international providers to collaboratively 
contribute to a single, global forecast, supporting 
the forecast's acceptance and use in oceanic air 
route planning.  During long-distance flights 
across multiple countries, it is critical that the 
international aviation community agrees to use 
such a single source of weather information, 
which will make air traffic safer and more 
efficient to manage.   

2. DATA AND CASE STUDY SET-UP 

The case study was conducted using data from 
climatologically distinct seasons (March – May 
(MAM) and June – August (JJA)) and regions 
(the two domains outlined in Figure 1, Caribbean 
and Pacific), and data from four global ensemble 
forecasts generated by the National Centers for 
Environmental Prediction (“NCEP”), Canadian 
Meteorological Center (“CMCE”), The Met Office 
(“UKMO”), and the European Center for Medium 
Range Forecasts (“ECMF”).  The latter two 
forecasts were obtained from the TIGGE 
database (Bougeault et al., 2010) and the former 
two from the NOAA Operational Model Archive 
and Distribution System (NOMADS) data feed.   

 
Figure 1.  Pacific (0N – 50N, 120E – 240E) and 
Caribbean (5N – 35N, 260E – 310E) domain 
used in study.   



The goal was to examine regional and seasonal 
differences in performance when using different 
weighting schemes to combine the calibrated 
probabilities obtained from each ensemble 
model, particularly when using different 
calibration approaches.   

Probabilities from each model were computed 
for every pixel using a relative frequency of 
occurrence based on ensemble member values 
exceeding a selected hazard threshold.  For 
example, if 10 of 20 members indicated a 
quantity greater than a given threshold, then 
p=0.5.  Only the perturbed members of the 
ensemble were used and not the control; 
however, we anticipate this would have only 
minor (if any) impacts on the results.   

The focus during this initial methodology 
development effort was on convective storm 
hazards, but the approach is applicable for other 
weather hazards as well.   

2.1 Verification Field 

As a starting point, and for simplicity in 
interpreting comparisons, we used accumulated 
liquid water precipitation over a 6-hour period 
(APCP6hr) as the predictand.  APCP6hr is 
readily available in all four models, and a 
reasonably well-understood observation field (in 
this case CMORPH 3-hour rain rates (Joyce et 
al., 2004)) can be used to generate a physically 
equivalent validation field.  The CMORPH data 
were down-sampled to the horizontal resolution 
of the model grid (1 degree x 1 degree), and 
integrated over two 3-hour rain rate periods to 
obtain a 6 hour accumulated value, which is 
comparable to that available from the global 
model ensembles. In this study we used a 
threshold of 2 mm on the observed precipitation 
as a proxy for significant weather. 

Although the subject of on-going research, we 
believe the overall approach will extend to 
convection once a verification field focused 
specifically on convection is more readily 
available.  Also, recall that convective hazards 
for aviation include turbulence, wind shear, 
lightning, heavy precipitation, hail, icing, and 
visibility.    

2.2 Calibration Methodology 

For the calibration of each model, an optimal 
threshold was selected (to the nearest 0.1 mm) 
to minimize a cost function for the region and 
season.  We examined three cost functions: 1) 
unconditional bias, 2) Brier Score, and 3) the 
reliability component of the Brier Score (Murphy 
and Winkler, 1992; Brier, 1950).   

For the first method, the unconditional bias was 
computed by differencing the average forecast 
probability and the verification field’s average 
observed occurrence rate.  For the other two 
cost functions we used the “CR” decomposition 
of the mean square error, as outlined by Murphy 
and Winkler (1992).  Figure 2 shows the 
resulting thresholds (y-axis) for each ensemble, 
organized into columns of region and season, 
using the three methods.  The average 
probability (unconditional bias) approach 
produces the smallest calibration correction, 
while the reliability approach produces the 
largest.  

To combine models, we used the unconditional 
bias approach for threshold selection, as it was 
easy to implement and conceptually easy to 
explain as producing a probability forecast that, 
on average, matches the observed rate of 
occurrence.  For the other two methods, 
performance can influence the calibration 
threshold selection, particularly at high 
probabilities, typically resulting in much higher 
thresholds than the purely unconditional bias 
approach.   

2.3 Fusion Methodology 

To examine the impact of the approach used to 
combine the calibrated probability field from two 
or more ensemble models, we examine the 
performance of three different weighting 
schemes: 1) Equal weights, 2) Optimal weights 
based on using Brier Skill Score (BSS), and 3) 
Optimal weights determined with multiple linear 
regression.   

The combined probability was computed using a 
weighted average of each ensemble’s calibrated 
probability.  For the equal weights approach, 
each weight was set to 0.25.  For weights 
determined from the BSS, which is given as 



 

 

Figure 2.  Resulting thresholds (APCP6hr in mm) for the two regions (Caribbean left; Pacific right) and 
two seasons (MAM, JJA).  NCEP in Red; CMCE in blue; ECMF in green; and UKMO in black.  For each 
sub-column, the first value is derived using the Brier Score, the 2nd value from the Reliability component 
alone of the Brier Score and the 3rd value is derived using the unconditional bias. 
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we used the NCEP model’s calibrated 
probability as the reference (REF).  Following 
Hamill and Juras (2006) scores were computed 
and compared only for identical observations, to 
avoid base rate differences influencing the 
metrics.  Each model was given an equal 
starting weight of 0.25, then adjusted depending 
on the relative performance compared to NCEP.  
The weights, normalized across the four models, 
are shown in Table 1.  Note that ECMF weights 
are highest, indicating a better Brier Score (at 
the selected threshold providing the best 
unconditional bias).   

For the regression approach, a multiple linear 
regression fit was performed (e.g., see Exelis 
IDL “regress.pro”) on the set of calibrated 
probabilities and the verification field to 
determine the coefficients.  Table 2 shows the 
resulting weights after the coefficients were 
normalized.   

Regression-derived weights tend to provide a 
wider range of weights compared to those 
obtained when optimizing the BSS.  For the 
Pacific region the pattern of lowest to highest 
weight is similar to the BSS-derived values seen 
in Table 1; however, for the Caribbean, NCEP 
and CMCE reverse positions in the ordering and 
ECMF weighting is amplified, keeping it the 
highest.   

Table 1.  Normalized Brier Skill Score derived 
weights for each region and season, for the four 
models in the case study.   Due to rounding in 
the table presentation, the sum of weights for 
each column doesn’t always add-up to one.   

 
Model 

Pacific Caribbean 
MAM JJA MAM JJA 

NCEP 0.18 0.19 0.25 0.24 
CMCE 0.28 0.30 0.26 0.26 
ECMF 0.33 0.32 0.30 0.31 
UKMO 0.22 0.19 0.19 0.18 

 



Table 2.  Derived weights as in Table 1, except 
using the regression approach.   

 
Model 

Pacific Caribbean 
MAM JJA MAM JJA 

NCEP 0.14 0.19 0.25 0.27 
CMCE 0.27 0.28 0.22 0.19 
ECMF 0.36 0.34 0.41 0.42 
UKMO 0.23 0.18 0.13 0.12 

 
3. RESULTS 

Using the resulting weights with the underlying 
calibrated probabilities, performance metrics 
were computed.  Namely, BSS compared to 
NCEP and the reliability component of the Brier 
Score, which is most indicative of calibration 
(Murphy and Winkler, 1992).  Figure 3 
summarizes the results over the two regions, 
seasons, and weight-derivation approaches.  

 

Figure 3.  Resulting reliability and Brier Skill Scores (BSS) for the three weighting approaches (Equal 
Weights on the left, BSS selected in the middle, Regression on the right).  The connected lines are BSS 
(higher is better) and the bars are reliability (lower is better).  Each color represents a different 
season/region (blue = Pacific JJA; orange = Caribbean JJA; grey = Pacific MAM; yellow =Caribbean 
MAM). 

There is some benefit of the BSS compared with 
equal weights as seen in both the increase in 
BSS (compared to GEFS) and decrease in the 
reliability score, while the regression approach 
offers some improvement over the BSS 
approach.  While the regression approach 
appears most promising, it is more difficult to 
implement and more difficult to explain 
compared to the straightforward mean-squared 
error approach of the BSS.  Perhaps more 
importantly, the BSS-derived weights can be 
determined independently by each potential 
international provider of weather information 
without requiring data from all other modeling 
centers.  

To further explore the performance of the 
individual and combined probabilities, we also 
looked at the components of the Brier Score 

(reliability and resolution) for several 
combinations of equally weighted models and 
multiple calibration approaches.  These results 
are summarized in Figure 4 for the Caribbean 
domain for JJA.  Other periods and regions 
appeared to give qualitatively similar results 
although inter-comparison is made challenging 
by the underlying differences in the observed 
base rate (Hamill and Juras, 2006).  The 
different base rates give offsets in the Brier 
Score due to the uncertainty component and 
also impact the resolution component.  Using a 
single domain and season with the same 
verification field (forecast and observation pairs) 
makes the interpretation less problematic as 
differences in resolution and Brier Score are due 
to forecasts alone and not the observed 
frequency. 
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For the models shown, the actual calibration 
approach (reliability, Brier Score, bias) doesn’t 
appear to significantly influence overall 
performance. As long as the threshold used to 
calibrate the model forecasts is “in the ballpark” 
the results are similar when combining models.  
Performance improves as probabilistic forecasts 
from skillful ensembles are included in the final 
forecast probability with the best performance 
being achieved when combining all four models. 

4. SUMMARY 

A methodology was presented on how to 
combine multiple ensemble forecasts to develop 
probabilistic, globally harmonized aviation 
weather hazard guidance products for 
transoceanic flight planning.  Various options for 
the calibration and fusion of ensemble forecasts 
were discussed, with an initial focus on 
convective weather hazards.  APCP6hr 

forecasts varied in comparison to CMORPH, 
while a fused product of all bias-corrected 
models provided the best performance.  This is 
reasonably consistent with other TIGGE-related 
findings reported by Park (2008) and Hamill 
(2012).  Even an equally weighted average 
provided good results, likely because the four 
models studied are mature and highly refined, 
so equal weighting is a good first-guess.  As 
Hamill (2012) pointed out, examining a multi-
model combination with less mature models may 
not provide the same level of combined forecast 
benefits.  The BSS-based weighting approach 
used here could lend itself to those cases where 
individual ensemble’s performance show more 
extreme spatial or temporal variation, and thus 
provide a scalable approach for combining 
ensembles.   

 

 
Figure 4.  Brier Score components (reliability and resolution) for the Caribbean (JJA).  Reliability is better 
toward the left of the chart, and resolution is better toward to the top.  The + symbols are individual model 
results for thresholds of 2.0 mm to 5.0 mm, as labeled. The large black circles encapsulate combined 
ensemble performance.  Best performance is achieved using all four model ensembles.  Within each 
combined probability, results are shown for different calibration approaches (blue = avg. probability; red = 
reliability; black=Brier Score).  The diamonds are NCEP+CMCE; the circles are NCEP+UKMO; the 
squares are UKMO+ECMF, and the triangles are all models combined.  The diagonal dashed lines are 
isopleths of Brier Score (better score to the upper left).



The case study was limited to forecasting 
probability of significant precipitation (over a 6-
hour period), an initial proxy field for convective 
hazards.  We anticipate the overall approach 
could work for forecasts of other aviation 
hazards as well.  However, further investigation 
is needed to assess how to treat regional 
variations in performance among the models 
and to assess how skill might change as 
probabilistic forecasts from additional ensembles 
of varying levels of skill are included in the 
harmonization process.  Moreover, defining the 
“truth” for assessing the predictions against 
remains challenging due to sparse observations 
of relevant atmospheric quantities.   
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