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In the early 1980’s Eugenia Kalnay was
my postdoc advisor at the Goddard
Modeling and Simulation Facility (GMSF),
a precursor to the current Goddard
Modeling and Assimilation Office (GMAO).
One of the great things about being a
postdoc at Goddard was the great range
of scientists, collaborators, and visitors.
There were many new interesting ideas—
including new interesting ideas for data
assimilation (DA). For context, for the
younger audience members, optimum
interpolation (OI) was the cutting edge
DA method at this point.

Thanks to Eugenia, I was introduced to a
wide range of topics in predictability,
ensembles, and data assimilation. Many of
these topics became personal research
interests and have evolved and morphed
into new areas of research of wider
interest, with potential or actual impacts
on operations. My postdoc research
experiences—in what were then new
research areas—included trying to
answer the questions listed on this slide.

e How can we use ensembles to
improve forecasts, skill vs. spread,
etc.?

e How can we use the data
assimilation cycle to identify and
correct model bias?

e How should observing system
simulation experiments (OSSEs)
be designed?

e (Can we solve variational data
assimilation with nonlinear obs
operators by using conjugate
gradient minimization?

e What can we do when a feature (a
storm) is in the wrong place in the
background?

e What can we do when only half of
a feature is observed by a
satellite?

e Would it be possible/better to use
radiances in data assimilation
instead of retrievals?

e (Can we determine time
continuous solutions to the
governing equations that best fit
some observation? (Can we solve
the 4d-VAR problem?)

[ will describe some advances in some of
these areas and make some predictions of
the future evolution of data assimilation.
In principle, modern approaches answer
these questions. In practice,
approximations and short cuts are
required and keeping these topics in mind
can help to understand results from
modern systems, and point the way to
improving them. Please, remember, this is
my personal view. In DA, we have to focus
in on the problem at hand, but DA
systems are complex and are impacted by
many different design choices. I will show
some details as examples, but basically, |
want to take a top level view of DA.

Usually we try to find a balance between
our prior knowledge and current
observations by minimizing a cost
function, usually called J. This approach is
optimal (maximum likelihood or least
squares sense) if some assumptions are
true about the observation and model
errors—that they are unbiased or have a
known bias that can be removed, that the
covariances are known, that the errors
are Gaussian. Of course, these
assumptions and the real world don’t
match.



We can view the advance of DA as making
better and better approximations and
transformations so that these
assumptions are better satisfied.
Characterization of the errors is
important. We want not just the standard
deviations and correlations of the
observations themselves. We must also
account for
e Representativeness error; and
e Forward model error, which
includes what might be called
e Geophysical “bias” (which is
usually caused by ignoring
something that is present in real
life).
Correlated errors will occur even in
radiances due to geophysical biases and
other forward model errors.

Transformation of the observations and
control variable are important, in order to
have errors that are Gaussian, and if
possible uncorrelated. Intuition helps to
obtain parsimonious error
characterizations. Transformations help
to limit correlations or to make them
easier (more parsimonious) to represent.
With enough transforms and assumptions
the background error covariance matrix
becomes the identity matrix, and Jp is
simply a dot product of the transformed
analysis increments with themselves.

What will the future bring? We will
squeeze more out of the data we have.
Coupled data assimilation will efficiently
use data with signals from two (or more)
components of the earth system. This will
include cloudy radiances, microwave
observations impacted by the surface and
even observations at the land sea
boundary. We will extract more
information from hyperspectral
instruments. Current subsets of channels
used in DA, from AIRS for example, tend
to not include interesting signals from the
boundary layer and from water vapor.

And even further in the future: Will
quantum computing solve the DA
problem once and for all? I'm going out on
a limb here, but then, [ won’t be around if
I'm wrong. While quantum computing can
deal with nonlinearity, it still requires
defining some metric of optimality.

Now I'll get back to reviewing some of the
work that started when [ was a postdoc.

Lagged averaged forecasting (Hoffman
and Kalnay 1983) is my most cited paper.
But on Eugenia’s list, it’s not even in the
top 10. This is not DA paper, but there is
an important lesson for DA. During the
linear growth of errors, the ensemble
mean stays on the attractor, but in the
nonlinear regime the ensemble mean
trajectory is very likely not a solution of
the governing equations. And add to this
that the attractor is the model attractor,
the real atmosphere is doing something
different, perhaps very different.

[ used the same toy model, developed for
my thesis and used in the lagged average
forecasting study, to solve the 4d-Var
problem (Hoffman 1986). Since 1 did not
know what an adjoint was, this was either
brave or foolish. I won’t go into the details
but highlight one finding—a finding that
is obvious after you know the answer.
And that is that the 4d-Var initial
conditions will have both growing and
decaying perturbations relative to the
truth at the beginning of the 4d-Var
interval. At the end of the interval, all
that’s left are growing modes and the
forecast errors amplify at a very fast rate.
In other words: a superior analysis may
not produce a superior forecast.

At the time of my postdoc minimizing a
function of several hundred variables was
novel. I realized that coding J and coding
the gradient of / would lead to problems
and instead it was important to code ] and
then determine the gradient of the code
for J. So I ended up coding the equivalent



of an adjoint by applying the chain rule to
my code for J in developing the
variational analysis method (VAM).
Originally the VAM was developed as an
ambiguity removal technique for
scatterometer winds (Hoffman 1984). In
this case J, and J, were nonlinear. The
VAM has continued to be used to produce
the cross-calibrated multi-platform
(CCMP) surface wind products from
microwave wind speeds and
scatterometer wind vectors (Atlas et al.
2011). (CCMP was one of the data
products highlighted on the NASA
hyperwall in the exhibits hall.)

As a postdoc, my VAM test case was 12 Z
10 Sep 1978 at the height of the QE2
storm, a N. Atlantic storm that damaged
the ocean liner QE2. At that time we had
scatterometer data for only a 3 month
period from the Seasat-A satellite
scatterometer (SASS). There were two
important lessons for me:

e Asingle ship report can have a
huge influence. (The Asia Hawk
wind report was probably from
35 degrees not from 350!)

e Observing half a strong storm
with a weak background in the
wrong place creates huge
challenges for DA.

In scatterometer data analysis we
explored two possible forms for the
observation function (Hoffman et al.
2003). The first uses the radar
backscatter values, the second uses the
retrieved, but ambiguous, wind vectors.
These are quite different but have minima
in the same place and give similar results.

More generally, should one use radiances
or retrievals in DA. In our simulation
study of 3d-retrievals (Hoffman and
Nehrkorn 1989), we examined an
intermediate approach. 3d-retrievals like
radiances assimilation uses information
on the smoothness of the temperature
field in the horizontal as prior knowledge,

information not available in the usual 1d
retrieval setting. In this study we
examined how to handle the effect of
cloud, which has both large scale
structure and substantial variations on
small scales equal to the size of the
observations. It's worth noting at this
point, that a modern 1d retrieval is in fact
a 1d DA methods that minimize J in the 1d
setting.

More recently, I returned to this question
on the side of retrievals (Hoffman 2011).
Within DA if we have to linearize the
observation operator, then we could
adopt the averaging kernel
representation. This provides several
advantages, including the possibility of
implementing interactive retrievals
within an EnKF DA.

The fact that the scatterometer observed
only half the QE2 storm lead to the
formulation of the Feature Calibration
and Alignment (FCA, Hoffman et al. 1995)
technique. Our insights into the weather
allow us to subjectively identify features,
say an intense storm. When a storm in the
wrong place, a static background error
covariance will be in error. 4dVar and
EnKF should improve this situation, but
FCA or other techniques, like running-in-
place, can help. Recently the feature
alignment part of FCA was implemented
in the WRFDA system, as a preprocessor
called dWRF (Nehrkorn et al. 2015).

Some things that should be kept in mind
for the future: First, I think we will
embrace strong signals even if they are
nonlinear—clouds, precip, etc.—and even
if the signals are from two or more earth
system components. One promising
approach for coupled DA is through
coupled obs operators. That is use each
component model as needed to evaluate
H(x1, x2,....) and then use the resulting
observation innovations in all of the
component model EnKFs.



In addition, it is important to have

e Highly accurate data;

e Knowledge of the structure of the

observation and model errors.

The question of “ensemble vs. variational
DA” might be replaced today with the
question “Can we afford to implement and
maintain a 4d-Var system?” And it is
important to keep in mind the large
sensitivity of DA systems to QC and data
selection.

A few closing thoughts: First,
representing and estimating model error
should viewed as a stop gap measure.
Obviously, it is best to improve our
models. Yes, you can tune model
parameters, adding stochasticity, or
inflate an ensemble. But these fixes can be
expected to be non-physical in some way.
In terms of the model attractor these fixes
correct only one projection, or we might
say, one shadow, of the model attractor.
While doing that, they may make a mess
of things when viewed from other
vantage points. Finally, what do we mean
by optimal. We might say an optimal
forecast minimizes lives lost and
maximizes damage averted. In the future,
will we actually use such metrics to define
optimal in DA?
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