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1. INTRODUCTION 
 
 Multi-Radar Multi-Sensor (MRMS) Quantitative 
Precipitation Estimate (QPE) products have been 
transitioned into the National Weather Service 
(NWS) operations at the National Center for 
Environmental Predictions (NCEP) (Zhang et al., 
2014). As part of this transition, a systematic 
validation and verification effort is under-way to 
characterize the MRMS performance in 
meteorological, aviation and hydrological 
applications.  This study examined the MRMS 
QPE performance for weather events occurring 
from December 2013 through March 2014 with a 
variety of areal coverage and precipitation types.  
While this study is limited to weather events that 
occurred east of the Rocky Mountains, a 
companion study is in progress that encompasses 
the inter-mountain regions (Martinaitis et al. 2014).  
Evaluations of QPE almost always involve an 
inter-comparison of radar rainfall estimates to rain 
gauge accumulations.  There are a number of 
limitations that must be considered during these 
types of detailed evaluations.  Ground clutter, 
blockage and non-meteorological echoes can 
contaminate the lower elevation angles; however, 
the extra information provided by Dual-Polarization 
(DP) data has been used by MRMS to mitigate 
these effects (Tang et al. 2014).  Increased 
sampling volume at greater distances (Steiner et 
al. 1999), beam overshoot and bright banding in 
the melting layer (Smith et al. 1996), improper 
calibration, and use of improper reflectivity-to-rain 
(Z-R) relationships (Wilson and Brandes 1974; 
Steiner et. al 1999) can significantly affect radar 
derived rainfall estimates.  Conversely, blockages 
and poor site placement (Sieck et. al 2007; 
Fiebrich et al. 2010), gauge undercatch due to 
strong winds (Wilson and Brandes 1974; Sieck et. 
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al 2007), power outages preventing data 
transmission (Martinaitis 2008), mechanical 
malfunctions, telemetry and transmission 
problems (Groisman and Legates 1994; Marzen 
and Fuelber 2005; Kim et al. 2009) can contribute 
to gauge errors. As the study progressed, it was 
readily apparent that some of these error factors 
were present in this study.  In particular, analysis 
indicated a number of the automated reporting 
gauges during winter weather events were 
becoming clogged, or “stuck,” due to frozen 
precipitation (Martinaitis et al. 2014). This 
adversely affected precipitation products that used 
hourly automated gauges to adjust radar 
estimates.    Therefore, this paper documented the 
performance of the MRMS QPE radar-only 
(Q3RAD, Zhang et al. 2014), the mosaic Dual Pol. 
(DPR, Giangrande and Ryzhkov, 2008) and the 
NCEP Stage II (SII, Lin and Mitchell, 2005) 
products for eleven precipitation events during the 
2013-2014 cool season over the United States 
east of the Rockies.   
 

 

2. DATA METHODOLOGY AND QUALITY 
CONTROL MEASURES   

 
 Eleven weather events between December 
2013 and March 2014 were chosen for the 
evaluation (see Appendix).  The events evaluated 
either had significant areas of rain, where totals 
were ≥ 51 mm (2.00 in.), significant areas of 
moderate to heavy snow, or a combination of the 
two. Upper air, numerical model and radar data 
combined with radar rainfall and gauge totals were 
evaluated for 24-hr periods ending at 1200 UTC.  
Hourly and 24-hr radar derived estimates and 
gauge accumulations were compared at 
corresponding grid-point (henceforth called R/G 
pairs). Approximately 12,000 rain gauges from a 
variety of national and regional networks are 
ingested by the MRMS system, including 24-hr 
precipitation data from the Community 
Collaborative Rain, Hail & Snow (CoCoRaHS) 
network and hourly data from Hydro-
meteorological Automated Data System (HADS).   
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Figure 1.  Q3RAD 24-hr QPE ending at 1200 UTC 22 December 2013 (a, b) and 23 December 2013 (c, 
d).  Locations where gauge totals report ≤ 0.25 mm (0.01 in.) and Q3RAD ≥ 6.4 mm (0.25 in.) denoted by 
the filled purple bias circles.  Dashed lines denotes the RAP model analysis 0°C surface temperature at 
1800 UTC 21 December (black), 0000 UTC 22 December (red) and 1200 UTC 22 December (white). 
 
CoCoRaHS gauge totals are reported by volunteer 
observers trained to monitor and report both liquid 
and frozen precipitation types measured by 
catchment rain gauges.  HADS gauges are 
automated with the primary gauge type being the 
heated tipping bucket variety.  The previously 
mentioned challenges with gauge performance 
during frozen precipitation were prevalent in this 
study.   Figure 1 shows the Q3RAD 24-hr 
precipitation estimate ending at 1200 UTC 22 
December 2013 and 23 December 2014. 
Meteorological Phenomena Identification Near the 
Ground (mPING) and synoptic reports confirmed 
model analysis data that frozen precipitation was 
falling across the region where the large majority 
of the gauges indicated that none or very little 
precipitation was measured.  There were some 
gauges in regions with above freezing surface 
temperatures that were also likely stuck, clogged 
or malfunctioning.  However, these were 

outnumbered by a factor of four by suspect 
gauges located in freezing temperatures.  
 Almost all of these suspect gauges were 
automated and their presence had a significant 
impact on performance statistics as well as the 
MRMS locally gauge corrected radar QPE (Q3GC) 
product (Zhang et al. 2011, 2014).  Figure 2 shows 
the Q3RAD and Q3GC estimates for the same 
time, with Q3GC adjusted based on hourly 
automatic gauge data. National Weather Service 
analysis (not shown) confirmed that a swath of 
moderate to heavy snow fell in this region with 
snowfall totals from 100 mm (4.00 in.) to 200 mm 
(8.00 in.) with locally higher amounts.  The 
presence of hundreds of stuck gauges removed 
the precipitation maximum behind the freezing line 
in the Q3GC product.  This example was not an 
isolated event as large numbers of suspect 
gauges during other precipitation events adversely 
affected the Q3GC product.  Therefore, the  



 

 

 
Figure 2.  Q3RAD (left) and Q3GC (right) 24-hr QPE ending at 1200 UTC 22 December 2013.  White 
dashed ovals indicate major differences between the two products. Black dotted ovals indicate effects 
caused by stuck gauges. 
 
authors did not evaluate the Q3GC product or any 
other gauge adjusted product.  Instead, the 
following products were evaluated: Q3RAD, 
Mosaic Dual Pol. (DPR) and the NCEP Stage II 
radar-based (hereafter, SII) precipitation 
estimates.  The process for creating DPR mosaics 
is to first sum hourly Dual Pol. accumulations from 
the Level III data from the Weather Surveillance 
Radar-1988 Doppler (WSR-88D) Next Generation 
Radar (NEXRAD) network.  MRMS uses a  
‘nearest neighbor’ approach to determine which 
Dual Pol estimates to assign to a grid-point; 
essentially, the estimates from the radar closest to 
the coordinate was used.  There is no attempt to 
smooth the discontinuities that resulted from such 
a mosaic as the boundaries between the radars 
highlighted any radar-to-radar precipitation 
estimate inconsistencies that may be related to 
reflectivity, differential reflectivity or hydro-
meteorological classification algorithm (HCA) 
differences.  The SII products are developed from 
WSR-88D NEXRAD data transmitted to NCEP in 
real-time.  Individual WSR-88D radar rainfall 
estimates are merged onto a national 4 km 
resolution grid. Inputs from multiple radars are 
averaged using an inverse distance weighting 
formula (see Q&A, Stage II at 
http://www.emc.ncep.noaa.gov/mmb/ylin/pcpanl/Q
andA/ for details).  The performance of these three 
radar-only products was compared to the NCEP 
Stage IV (SIV) product which uses a combination 
of quality controlled WSR-88D, satellite and rain 
gauge data to create a refined rainfall estimate 
analysis.  While the SIV product is not a real-time 
product for most operational forecasters, it has  
 

 
Figure 3  Power laws used to assist in quality 
control of R/G pairs.  The upper (lower) curve 
represents the upper (lower) bound for gauge 
values for a given Q3 hourly total.  
 
served as the standard for rainfall estimates within 
the hydrological community. 
 
 Because of the problem with gauges 
becoming stuck in below freezing temperatures, 
we chose to assess performance based on 
comparisons between the aforementioned radar 
only products and 24-hr accumulations from 
CoCoRaHS gauges.  CoCoRaHS gauges have 
been found to be more consistent and suitable in 
previous performance assessments. As a minimal 
quality control measure to reduce erroneous 
totals, both Q3RAD and the CoCoRaHS gauges 
were required to be ≥ 2.5 mm (0.10 in.) before 
including the pair into the analysis.  Performance 
assessment statistics were generated based on all  
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Figure 4.  24-hr QPE from Q3RAD (top left), DPR (top right), SII (bottom left), and SIV (bottom right) vs. 
CoCoRaHS gauges for all cool season cases.  Blue (red) denote over (under)-estimates.  Black denotes 
R/G pairs within one standard deviation. Colored x’s, circled x’s and dots represent pairs greater than the 
1

st
, 2

nd
 and 3

rd
 standard deviation.  ‘G’ denotes number of gauges, ‘B’ bias, ‘R’ RMSE and ‘C’ correlation 

coefficient. 
 
available R/G pairs and by pairs stratified by 24 
hour gauge totals ≤ 6.4 mm (0.25 in), ≤ 12.7 mm 
(0.50 in), > 25.4 mm (1.0 in) and > 50.8 mm (2.0 
in).  For statistical measures we used a mean bias 
ratio, defined as the ratio of the gauge total to 
radar estimate, Root Mean Square Error (RMSE), 
and correlation coefficient to evaluate the product 
performance.  For time series analysis and 
diagnosing error trends, HADS hourly data were 
used with rigorous quality control (QC) measures.  
QC was primarily applied via a set of thresholds 
used to determine whether the gauge total, when 
compared to the radar estimate, was reasonable.  
Two power laws, that describe an upper and lower 
gauge total threshold, were developed from 
gauge/Q3RAD estimates collected during August 
2013 (Fig. 3).  If a gauge report did not meet these 
threshold values, the report was considered 
suspect. While this technique is not perfect, it was 
effective in identifying and removing gauges that 
were likely suspect.   
 
 
3.  STATISTICAL ANALYSIS AND RESULTS  
 

 Figure 4 and Table 1 show the scatter plot and 
the cool season statistical results for 24-hr 
accumulations. The extensively quality controlled 
SIV estimates had the best overall performance 
with the lowest RMSE, highest correlation 
coefficient and the least bias for all accumulation 
stratifications. Q3RAD estimates had the second 
best performance as indicated by the RMSE and 
correlation coefficient statistics.  However, the 
scatter plot and table 1 indicate Q3RAD tends to 
underestimate totals during the higher precipitation 
events.  While DPR had some statistics better 
than the SII estimates, it has more variability as 
easily seen in the scatter plots.  The increased 
variability was likely related to differential 
reflectivity (ZDR) calibration errors within the 
NEXRAD network and melting layer precipitation 
estimate challenges.  The former will continue to 
improve as new procedures are developed to 
reduce ZDR calibration errors (Cunningham et al. 
2013; Hoban et al. 2014) while additional 
techniques, such as vertical profile of reflectivity 
(VPR) corrections of bright band contamination, 
are being considered for the latter.  Overall, the SII 
estimates had the overall lowest statistics with a  



 

 

Table 1. Bias, RMSE and correlation for each precipitation estimation product stratified by gauge amount. 

Product 24 hr Gauge Amount # R/G Pairs Bias RMSE (mm) Correlation 

Q3RAD G ≤ 6.4 mm (0.25 in.) 3,975 0.59 5.9 0.11 

 G ≤ 12.7 mm (0.50 in.) 9,524 0.80 6.1 0.27 

 G > 12.7 mm (0.50 in.) 11,654 1.29 14.9 0.74 

 G > 25.4 mm (1.00 in.) 5,452 1.40 19.9 0.68 

 G > 50.8 mm (2.00 in.) 1,589 1.51 29.5 0.56 

      

DPR G ≤ 6.4 mm (0.25 in.) 2,958 0.55 8.0 0.08 

 G ≤ 12.7 mm (0.50 in.) 7,411 0.76 8.9 0.20 

 G > 12.7 mm (0.50 in.) 9,988 1.21 19.3 0.58 

 G > 25.4 mm (1.00 in.) 4,790 1.34 23.7 0.54 

 G > 50.8 mm (2.00 in.) 1,416 1.44 31.8 0.56 

      

SII G ≤ 6.4 mm (0.25 in.) 1,052 1.01 2.9 0.02 

 G ≤ 12.7 mm (0.50 in.) 3,871 1.69 5.2 0.09 

 G > 12.7 mm (0.50 in.) 10,443 2.71 25.1 0.73 

 G > 25.4 mm (1.00 in.) 5,335 2.73 32.8 0.67 

 G > 50.8 mm (2.00 in.) 1,582 2.60 47.1 0.53 

      

SIV G ≤ 6.4 mm (0.25 in.) 4,268 0.71 4.2 0.16 

 G ≤ 12.7 mm (0.50 in.) 9,883 0.88 4.4 0.43 

 G > 12.7 mm (0.50 in.) 11,699 1.08 9.6 0.89 

 G > 25.4 mm (1.00 in.) 5,459 1.08 12.5 0.84 

 G > 50.8 mm (2.00 in.) 1,590 1.08 17.7 0.66 
 
strong tendency to underestimate precipitation; 
however its consistency makes it more easily 
correctable, via a bias adjustment or gauge 
correction, than DPR estimates.   
 
 Table 1 confirms that all of the radar only 
estimates tended to underestimate in moderate to 
heavy precipitation to varying degrees.  The bias 
and RMSE increased while correlation coefficient 
decreased for the higher precipitation total 
stratifications.  This is not surprising as radar 
beam overshoot is more common during the cool 
season due to shallower precipitation systems and 
lower cloud bases;  however, the degree which the 
SII product underestimates precipitation totals 
when compared to the Q3RAD and DPR was 
surprising.  Radar beam overshoot should be 
partly mitigated in all of the products due to the 
various radar mosaic processes used.  We 
speculate that the real difference in terms of the 
magnitude of the under-estimates between SII and 
Q3RAD/DPR is the latter two uses radar echo 
classifications to determine the Z-R relationship 
used to calculate precipitation.  SII uses the same 

Z-R relationship for the entire radar field and is 
chosen by the forecaster with regards to the 
synoptic or meso-scale situation.  All of the 
products tend to have lower correlation and a 
distinct overestimate bias for lighter precipitation 
totals (i.e., ≤ 12.7 mm).  A significant portion of 
these errors are likely due to precipitation 
evaporating/ sublimating before reaching the 
ground, gauges impacted by frozen precipitation 
but passed the QC threshold or a combination of 
both.  An advancement of the VPR algorithm was 
installed this past spring to help mitigate these 
types of errors in MRMS by comparing multiple 
radar observations at an overlapping point and 
ensuring the lowest radar bin has significant 
echoes present before coding a geographical point 
as having precipitation.  However, it will still be 
unable to determine whether echoes seen at the 
lowest radar bin actually reaches the ground, 
especially at farther ranges. 
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Figure 5.  Q3RAD (blue dashed line, triangles), 
DPR (green dashed line, squares), SII (red 
dashed line, circles) and SIV (black solid line, 
diamonds) mean bias ratio statistics for each cool 
season case evaluated. 
 

 
Figure 6.  Same as Figure 5 except for RMSE. 
 
 
4.  EVENT-BY-EVENT RESULTS AND 
NOTABLE EXAMPLES 
 
 Figure 5 shows the mean bias ratio for each 
precipitation estimate product during each cool 
season event.  The bias for SII was generally 
above 2.00 for all evaluated events.  We view the 
SII radar only product as a mosaic proxy for the 
Precipitation Processing System (PPS), while 
Q3RAD, DPR, and SIV represent more recent 
precipitation estimate developments.  The large 
differences between SII and the other precipitation 
estimates, in a way, reflect the progress that has 
been made over the past fifteen years to further 
improve precipitation estimates and hence 
improve operational hydrological forecasting.  The 
bias for the SIV product is closer to one than 

Q3RAD and DPR because of the inclusion of 
quality controlled gauge observations by 
forecasters.  However, the Q3RAD bias showed 
encouraging results for an automated real-time 
product; DPR is also fairly close to ‘one’ but as 
mentioned previously there is also a lot of scatter 
associated with the estimates.  The overall best 
correlation values (not shown) were consistently 
found with the SIV product followed next by 
Q3RAD, DPR and SII.  The SII product had the 
higher RMSE errors in most cases with SIV having 
the lowest RMSE (fig. 6). Q3RAD was 
comparable, within 5.0 mm (0.20 in.), to SIV in the 
majority of the cases.  The DPR RMSE errors 
(correlation) were likely higher (lower) due to the 
calibration and melting layer challenges mentioned 
previously.  The following are some notable 
examples where DPR had difficulties estimating 
rain within the melting layer.   
 

 
Figure 7: Q3RAD (top) and DPR (bottom) 
estimates vs CoCoRaHS gauge totals for the 24-
hr period ending 12:00 UTC, 29 January 2014 with 
legend same as figure 4. 
 
4.1. SOUTHEASTERN U.S. PRECIPITATION 
EVENT OF 28-29 JANUARY, 2014 
 
     An arctic air mass was in place over much of 
the southeastern U.S. on the 28

th
 and 29

th
 of 

January, 2014.  An upper trough, jet stream  



 

 

 
Figure 8: DPR (a), Q3RAD not corrected for bright band contamination (b) and Q3RAD (c) estimates for 
the 24-hr period ending 12:00 UTC, 29 January 2014. 
 

 
Figure 9: Digital hybrid scan reflectivity (a), correlation coefficient (b) and hybrid-hydro meteorological 
classification algorithm (c)  images from the Jackson, Mississippi WSR-88D at 16:50 UTC, 28 January 
2014.  Dual Pol. precipitation estimate (d) for the 1-hr period ending 17:00 UTC of the same date.  
 
dynamics and moisture flowing over the colder air 
resulted in the development of freezing rain, sleet 
and snow over large sections of the region.  Fig. 7 
shows the scatter plots for the radar only products.  
Both Q3RAD and DPR had a significant amount of 
scatter and there was a distinct over-estimate bias 
present in this event.  The DPR plot is notable as it 
has an even stronger over-estimate signature than 

Q3RAD.  Calibration of radar reflectivity (Z) and 
differential reflectivity (ZDR) was evaluated using 
the Radar Reflectivity Comparison Tool (RRCT, 
available at: http://rrct.nwc.ou.edu/).  Most radar Z 
values appeared to be within +/– 1 dBZ of each 
other.  It is harder to discern ZDR calibration 
across the network as it is difficult to measure the 
ZDR bias with high precision.  A ZDR bias higher 

http://rrct.nwc.ou.edu/
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than 0.25 dBZ can substantially reduce the 
performance of Z/ZDR based rain estimates.  
Overall, there were some radars that clearly had 
biases above 0.30 dBZ while others it was harder 
to determine as the value lay between 0.15 and 
0.30 dBZ.  Suffice to say that ZDR calibration 
likely affected some of the precipitation estimates; 
however much of the area was below freezing at 
the surface and as a result precipitation estimates 
calculating rain rates using Z and ZDR (R(Z,ZDR)) 
were infrequent for this case.  
 
     Besides calibration induced errors, melting 
layer overestimates were noted in the DPR 
estimate data.  Fig 8 shows the 24 hour totals 
around the Jackson, Mississippi WSR-88D radar 
(KDGX).  The DPR estimates exhibited maximum 
liquid precipitation totals of 50 to 76 mm (2.0 – 3.0 
in), substantially more than the Q3RAD or even 
the Q3RAD estimate uncorrected for bright band 
contamination.  The Q3RAD estimate without 
bright band correction applied was lower than the 
DPR estimate for two reasons.  The first is related 
to the MRMS mosaic process used to develop the 
reflectivity field.  If more than one radar is 
available for a grid-point a weighted mean is taken 
(Zhang et al., 2011) which may act to smooth out 
spuriously high reflectivities.  Second, once the 
mosaic reflectivity field is created a unique Z-R 
relationship is applied, either a cool (Z = 75*R

2
 

where ‘R’ represents rain rate) or a warm ( Z = 
200*R

1.6
) season equation.  This is in contrast to 

what is used by the DPR estimates which uses the 
convective Z-R relationship (Z = 300*R

1.4
), 

multiplied by a coefficient, for hybrid hydro-
meteorological classification algorithm (HHC) 
classifications in and above the melting layer and 
for any graupel or wet snow classifications below 
the melting layer.  Fig. 9 showed the digital hybrid 
reflectivity (DHR), correlation coefficient (CC), 
hybrid hydro-meteorological classification 
algorithm (HHC) and the one-hour DPR estimate 
for the Jackson, Mississippi WSR-88D (KDGX) 
during a period where the highest one-hour DPR 
accumulations were generated.  A calibration 
check of the KDGX radar indicated it appeared 
reasonably calibrated in Z although it showed a 
significantly high bias (at least 0.4 dBZ) in ZDR.  
The CC data clearly indicated a melting layer to 
the south of the radar but precipitation had re-
frozen by the time it reached the ground as 
indicated by surface observations (not shown).  
The HHC between 16:00 and 17:00 UTC classified 
radar echoes as either dry snow, the most 
common classification, or as graupel (in areas with 

higher reflectivity).  For these classifications, the 
Dual Pol. Quantitative Precipitation Estimate (DP 
QPE) algorithm estimated precipitation via the 
convective Z-R relationship multiplied by a 
coefficient (as determined by the HHC class).  
Regardless, the DPR totals are quite high 
throughout the melting layer which is due not only 
to bright band contamination but likely the use of 
the convective Z-R relationship.   
 

 
Figure 10: Q3RAD (top) and DPR (bottom) 
estimates vs CoCoRaHS gauge totals for the 24-
hr period ending 12:00 UTC, 03 February 2014 
with legend same as figure 4. 
 
Ground truth from hourly automatic gauges in the 
bright-band affected region around KDGX was 
practically non-existent as most were substantially 
impacted by a combination of freezing rain, sleet, 
or snow.  However, there were five CoCoRaHs 
gauges within the bright band region that were 
available for comparison.  The absolute value of 
the DPR minus gauge 24-hr accumulation error 
within the melting layer region averaged 37.2 mm 
(1.47 in); in contrast, the magnitude of the Q3RAD 
minus gauge error was 14.2 mm (0.56 in) 
representing about a 62% reduction in the error.  
While it is true that the CoCoRaHs gauges may 
have suffered some impacts such as gauge under- 



 

 

 
Figure 11: DPR (a), Q3RAD not corrected for bright band contamination (b) and Q3RAD (c) estimates for 
the 24-hr period ending 12:00 UTC, 03 February 2014. 
 

 
Figure 12: DHR (a), CC (b) and HHC (c) images from the Jackson, Kentucky WSR-88D at 04:55 UTC, 03 
February 2014.  Dual Pol. precipitation estimate (d) for the 1-hr period ending 05:00 UTC of the same 
date. Dashed black line represents highest 1-hr DPR accumulations. 

 
catch in snow and/or ice accumulation within the 
catchment, volunteers are trained in handling 
these situations so these amounts are the best 
estimates to what actually reached the ground in 
the area of interest.      
 

4.2. OHIO VALLEY/SOUTHEASTERN U.S. 
PRECIPITATION EVENT OF 02-03 FEBRUARY, 
2014 
 
     A cold front, associated with arctic air, was 
slowly moving eastward across the Ohio Valley 
and the Southeast U.S on the 02

nd
 and 03

rd
 of 

February, 2014.  Frozen precipitation was in 
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progress over portions of Indiana and northwest 
Ohio while rain was occurring southward as 
moisture was isentropically lifted up and over the 
colder air. Another area of precipitation, further 
southwest of the Ohio Valley region, developed in 
advance of a 500 hPa short wave.  This area of 
precipitation moved east-northeastward into the 
region by the evening of the 2

nd
 resulting in 

moderate to heavy rainfall in the Southeast and a 
variety of precipitation types over portions of the 
Ohio Valley and the Appalachian Mountains.  Fig 
10 shows the Q3RAD and DPR scatter plots for 
this event; the DPR plot is very similar to that seen 
in the previous case.  A check of radar calibration 
across the area indicated the Paducah, Kentucky 
(KPAH), Wilmington, Ohio (KILN), Evansville, 
Indiana (KVWX) and the Knoxville, Tennessee 
(KMRX) WSR-88Ds were at least 1.0 dBZ too 
warm or too cool respectively.  Otherwise, the rest 
of the radars in the region were within +/– 1 dBZ.  
With a couple of exceptions, most radar ZDR 
values were within 0.15 to 0.30 dBZ of each other.  
As previously noted, a ZDR bias above 0.25 dBZ 
will affect R(Z,ZDR).  Therefore, it is likely Z and 
ZDR calibration errors affected some of the radar 
estimates.     
 
     Fig 11 showed the 24-hr accumulations for 
DPR, Q3RAD uncorrected and Q3RAD.  Both, the 
DPR and Q3RAD uncorrected estimates exhibited 
‘hot’ spots of high accumulation in the same 
general vicinity; some in the shape of distinct arcs.  
The DPR QPE around the Jackson, Kentucky 

WSR-88D (KJKL) formed a nearly 180⁰ arc.  The 
Q3RAD, which was corrected for bright band 
contamination, showed much lower totals across 
the region.   Fig. 12 shows DHR, CC, HHC data 
and the one-hour DPR estimate for the KJKL radar 
during a time where the highest one-hour DPR 
accumulations were being generated.  This radar 
was reasonably calibrated in Z and the ZDR bias 
was between 0.15 and 0.30 dBZ.  At the surface, 
frozen precipitation was occurring over the 
northwest half of the radars field of view while rain 
was occurring elsewhere.  The CC data between 
04:00 and 05:00Z clearly indicated a melting layer 
coinciding with higher reflectivity; over the region 
of higher DPR accumulations the HHC classified 
echoes primarily as light/moderate rain.  For this 
HHC class, the rain rate is derived using an 
expression, dependent upon Z and ZDR, originally 
derived for warm season precipitation with tropical 
characteristics.  A comparison of DPR estimates 
with seven available CoCoRaHs gauges within the 
region of greatest DPR 24 hour accumulations 
(the arc region) was made to estimate the average 

error.  In contrast to the previous case, there were 
a number of hours when liquid precipitation 
occurred within the area of interest before 
transitioning to frozen precipitation.  The absolute 
value of the DPR minus gauge error within the 
area of interest averaged 33.8 mm (1.33 in); in 
contrast, the magnitude of the Q3RAD minus 
gauge error was 11.5 mm (0.46 in), a nearly two 
thirds reduction.  It should be noted that there 
were a couple of gauge sites where Q3RAD 
actually under-estimated when compared to the 
CoCoRaHs 24-hr totals, indicating the VPR 
correction may have been too aggressive.  
However, the error magnitudes observed were 
substantially lower than that seen with DPR for 
each gauge.   
 
 
5.  Q3RAD PRECIPITATION TYPE ANALYSIS 
 
 Analysis was conducted of the MRMS 
precipitation type contributions to the Q3RAD 
totals for over and under-estimate R/G pairs to 
better understand what may be causing some of 
the Q3RAD error trends seen in the statistics. 
MRMS uses a ‘Surface Precipitation Type’ 
algorithm to classify radar data based upon a 
combination of echo characteristics and model 
data in order to assign a unique reflectivity-to-rain-
rate (Z-R) relationship for each class (Zhang et al. 
2011, 2014).  There are seven possible 
precipitation classifications: 1) warm stratiform 
(WS), 2) cool stratiform (CS), 3) tropical stratiform 
(TS), 4) convective (CO), 5) hail (HL), 6) tropical 
convective (TC), and 7) snow (SN).  If no radar 
echoes are present for a given time step, then the 
pixel in question is assigned the designation ‘no 
echo’ (NE).  To determine the importance of the 
stratiform and convective precipitation types to 
R/G pair over- and under-estimate values, the 
various classifications were combined into three 
categories: Stratiform (WS, CS, TS), convective 
(CO, HL, TC) and snow (SN).  While most of the 
SN classifications were probably stratiform-like 
radar echoes with model temperatures indicating 
the surface was at or below freezing, SN was still 
separated out to identify trends related to 
challenges with measuring frozen precipitation.  
To determine what classification categories 
contributed most to the hourly Q3RAD 
precipitation estimates the total amount of Q3RAD 
estimated per time step was calculated for each 
hourly R/G pair.  From this, the total Q3RAD 
estimate per precipitation classification was 
summated for all time steps and all hourly R/G 
pairs.  Then the percentage contribution of each  
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Figure 13.  Percent contribution to Q3RAD totals 
for all R/G pairs and the first SDE over (O1) and 
under (U1) estimate R/G pairs.  Red and light blue 
horizontal hashes mark the first SDE uncertainty 
of the eleven case average.   ‘St’, ‘Co’ and ‘Sn’ 
denote stratiform, convective and snow 
categories.     
 

 
Figure 14.  Same as Figure 8 except for second 
SDE estimates.  
 
precipitation classification to the Q3RAD total was 
calculated. The first and second Standard 
Deviation Error (SDE) over- and underestimates 
were determined by examining the hourly radar 
estimate minus gauge (R – G) errors.  There were 
more than 3.5 times as many 1

st
 SDE 

underestimates than overestimates in the data, 
confirming the tendency seen in the Q3RAD vs. 
CoCoRaHS analysis. The average percent Q3 
contribution to the total for each category and the 
standard deviation of the average for the eleven 
evaluated cases were calculated and graphed for 
all R/G pairs and first and second SDE over- and 
underestimates (Figs. 13, 14). 
 
 For all R/G pairs, most of the Q3RAD 
contribution came from the stratiform rain  

 
Figure 15.  24-hr Q3RAD accumulation (a) and 
the height of the bottom of the radar beam (b) with 
locations of underestimates of at least the first 
SDE (black dots) for the period ending 1200 UTC 
5 February 2014.  The height of the bottom of the 
radar beam is in kilometers.   
 
categories followed by snow and convection which 
is not surprising for cool season precipitation 
events.  For 1

st
 SDE overestimate error R/G pairs, 

most of the contribution came from the stratiform 
(~56%) and snow (~37%) categories; Convection 
classifications contributed the least (< 7%) to the 
Q3RAD totals.  Similar results were found for the 
second SDE overestimate error R/G pairs.  The 
high percentages seen in the snow category likely 
reflect the difficulty of measuring snowfall, 
particularly if there is any wind present.  A large 
majority of precipitation gauges experienced a 
reduction in snowfall catch efficiency that 
increases with increasing wind speed in a study by 
Rasmussen et al. (2012).  This bias also depends 
upon the temperature and precipitation 
characteristics (Goodison and Yang 1996).  
Another factor that likely played a role in the 
overestimates associated with the snow 
classification was poor performance of the 
automated gauges during frozen precipitation 
events (Rasmussen et al. 2012; Martinaitis et al. 
2014).  The high percentages of overestimates in 
the stratiform category were primarily attributed to 
the cool stratiform precipitation classification.  
Examination of some of the cases indicated virga 
and gauges partially impacted by winter weather 
were having a significant impact.  The virga impact 
was also noted in the statistical analysis from 
Table 1 where Q3RAD estimates typically had low 
correlation and a distinct overestimate bias for 24- 
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Figure 16.  Percentage of under-estimates (blue), 
1

st
 SDE under-estimates (red) and gauge-to-radar 

estimate bias (green) as a function of radar beam 
bottom height.  
 
hr totals ≤ 6.4 mm (0.25 in).  Other possible 
causes for overestimates would be gauge under-
catch in light rain, limitations of using Z-R 
relationships and improper radar calibration.    
  
 For 1

st
 SDE underestimate R/G pairs, the chief 

contribution to the Q3RAD totals were from the 
stratiform category (82.8%) followed by snow 
(8.6%) and convection (8.6%).  Similar results 
were found for the 2

nd
 SDE underestimate R/G 

pairs.  Further, the CS classification contributed 
the most to the under-estimate errors.  A 
significant amount of the error is likely due to the 
radar beam partially over-shooting the generally 
lower cloud bases and shallower precipitation 
systems found during the winter time, an example 
of which is illustrated in Fig. 15.  There were few 
underestimates from northwestern Arkansas to 
northwestern Tennessee and north of the Ohio 
River.  This was where temperatures in the 
previous 24 hours were either near freezing or 
sub-freezing, and hence, many gauges had likely 
become stuck or clogged from winter precipitation.  
In the warmer air, there were a number of under-
estimate R/G pairs, a number of which were 
clustered in regions where the bottom of the radar 
beam is at least 1 km above ground level.  
Analyses for the events on 3 February 2014 and 
13 February 2014 indicated similar tendencies (not 
shown).  To get a more quantitative look at radar 
beam over-shoot, the percentage of R – G < 0 
(underestimates) was plotted as a function of the 
seamless hybrid scan reflectivity beam bottom 
height (H-SHSR) above the ground (see fig. 16).  
As expected in the winter season, the percentage 
of underestimates increased linearly from 

approximately 45% at 0.25 km to near 70% at 2.0 
km.  However, this effect does not account for 
under-estimates that resulted from partial beam 
filling, mis-classification of precipitation types, the 
limitations of using Z-R relationships and improper 
radar calibration.  Additionally, frozen precipitation 
and there effects on gauges can even cause an 
under-estimate bias for radar estimates on some 
occasions.  This can happen when gauges 
previously stuck or clogged, with ice and snow 
contained within the gauge orifice, can begin to 
melt as temperatures rise and new precipitation 
begins to fall.  The thawing frozen precipitation 
begins to thaw giving the appearance more 
precipitation is being measured than what actually 
fell from the clouds (see Martinaitis et al. 2014 for 
an example). 
 
 
6.  CONCLUSIONS  
 
 Examination of eleven weather events east of 
the Rocky Mountains quickly revealed challenges 
in evaluating radar precipitation estimates during 
the cool season.  Analysis showed that a large 
number of automatic gauges were likely becoming 
stuck in freezing temperatures due to frozen 
precipitation.  Since gauge adjusted radar based 
QPE relied on these gauges for bias correction, 
this study evaluated radar-only precipitation 
estimates to avoid any improper gauge correction 
impacts.  Comparisons with SIV analyses showed 
that Q3RAD, DPR and SII all had a tendency to 
underestimate precipitation with SII having a more 
distinct bias.  While DPR had a slightly better bias 
ratio than Q3RAD, it also had more scatter, which 
was reflected in the higher RMSE and lower 
correlation values.  The higher DPR scatter is 
likely related to precipitation estimate challenges 
within and above the melting layer as noted in a 
couple of examples.  Overall, Q3RAD had bias 
and correlation statistics that were comparable to 
SIV data and a RMSE value that averaged 4.1 mm 
(0.16 in.) higher than SIV.  Further examination of 
the statistics revealed radar only estimates had a 
distinct underestimation tendency that was more 
pronounced for higher precipitation amounts.  A 
significant portion of this error could be attributed 
to radar beam overshoot. The ability of MRMS and 
the Dual Pol. HCA to utilize multiple Z-R 
relationships across a radar field may have 
mitigated the magnitude of Q3RAD and DPR 
underestimates.  For lighter 24-hr precipitation 
totals, all of the estimate products exhibited a 
distinct overestimate bias.  A significant portion of 
this error may be related to the presence of 
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precipitation evaporating prior to reaching the 
ground as well as to gauge undercatch and 
measurements made from gauges partially 
impacted by winter precipitation.  A review of the 
statistics of each radar-only estimate per weather 
event revealed a rather marked difference 
between SII and the other QPE products, which 
the authors view as a reflection of the substantial 
progress made in improving precipitation 
estimates over the past fifteen years.   
 
       An analysis of MRMS precipitation 
classification contributions to Q3RAD totals 
indicated the stratiform and snow categories 
produced the most for overestimate R/G pairs.  
The chief contributor of the stratiform category to 
these types of errors was the cool stratiform 
precipitation type.  It is hypothesized that a 
significant portion of the overestimate errors with 
the snow and cool stratiform precipitation types 
were related to gauge performance challenges in 
freezing temperatures and gauge under-catch in 
windy conditions.  Precipitation evaporating or 
sublimating prior to reaching the ground likely 
played a significant role as well.   Analysis also 
indicated that the cool stratiform classification, was 
associated with underestimate errors with the 
primary factor being radar beam overshoot 
although other factors are quite significant as well. 
 
There are several future investigations that are 
worthy of mentioning as they are related to 
verification and improvement of precipitation 
estimates.  First, a warm season analysis of 
precipitation estimates from meso-scale 
convective systems over the north central Plains 
and the southeastern U.S. is in progress to assess 
performance of the radar-only products.  Second, 
work is underway to integrate Dual Pol. 
information into MRMS Q3RAD precipitation 
estimates via the use of specific attenuation 
(Ryzhkov et al., 2014; Wang et al., In Press).  
Third, a future project will likely examine the 
feasibility of improving DPR estimates in the 
melting layer by incorporating a VPR correction of 
the bright band to WSR-88D products similar to 
what has been implemented in MRMS (Zhang and 
Qi, 2010; Zhang et al. 2011).  It may also be 
possible to apply a stratiform Z-R relationship, 
instead of the convective Z-R, within and above 
the bright band region to further reduce the error.    
 
 
7. REFERENCES 
   

Cunningham, J. G., W. D. Zittel, R. R. Lee and R. 
L. Ice, 2013:  Methods for identifying 
systematic differential reflectivity biases on the 
operational WSR-88D Network.  Extended 
Abstract, 36

th
 Conference on Radar 

Meteorology, 16–20 September 2013, 
Breckenridge, CO. 

 
Fiebrich, C. A. and co-authors, 2010:  Quality 

assurance procedures for meso-scale 
meteorological data.  J. Atmos. Oceanic 
Technol., 27, 1565–1582. 

 
Giagrande, S. and A. Ryshkov, 2008: Estimation 

of rainfall based on the results of polarimetric 
echo classification.  J. Appl. Meteor., 47, 
2445–2462.   

 
Goodison, B.E. and D. Yang, 1996:  In situ 

measurements of solid precipitation in high 
latitudes: the need for correction.  Proceedings 
of the Workshop on the ACSYS Solid 
Precipitation Climatology Project, WMO/TD-
739, WCRP-93, 3–17. 

 
Groisman, P. Ya., and D. R. Legates, 1994: The 

accuracy of United States precipitation data. 
Bull. Amer. Meteor. Soc., 75, 215–227. 

 
Hoban, N. P., J. G. Cunningham, and W. D. Zittel, 

2014:  Estimating Systematic WSR-88D 
differential reflectivity biases using Bragg 
Scattering.  30

th
 Conf. on Environmental 

Information Processing Technologies, Amer. 
Met. Society, 2–6 February 2014,  Atlanta, 
Georgia.   

 
Kim, D., B. Nelson, and D. J. Seo, 2009: 

Characteristics of reprocessed 
Hydrometeorological Automated Data System 
(HADS) hourly precipitation data. Wea. 
Forecasting, 24, 1287–1296. 

 
Krajewski, W. F., G. Villarini, and J. A. Smith, 

2010: Radar rainfall uncertainties: Where are 
we after thirty years. Bull. Amer. Meteor. Soc., 
91, 87–94. 

 
Lin, Y., and K. E. Mitchell, 2005: The NCEP stage 

II/ IV hourly precipitation analyses: 
Development and applications. Preprints, 19th 
Conf. on Hydrology, San Diego, CA, Amer. 
Meteor. Soc., Paper 1.2. [Available online at 
http://ams.confex.com/ams/pdfpapers/83847. 
pdf.]  

 



14 

Martinaitis, S. M., 2008: Effects of multi-sensor 
radar and rain gauge data on hydrologic 
modeling in relatively flat terrain. M. S. thesis, 
Florida State University, 99 pp. [Available 
online at 
http://etd.lib.fsu.edu/theses/available/etd-
11102008-150745] 

 
Martinaitis, S. M. and co-authors, 2014:  An 

examination of the impacts of frozen 
precipitation on gauge networks during winter 
precipitation events.  Extended Abstract, 39

th
 

Natl. Wea. Assoc. Annual Meeting, Salt Lake 
City, UT, P3.53. 

 
Marzen, J. and H. E. Fuelberg, 2005: Developing 

a high resolution precipitation dataset for 
Florida hydrologic studies. 19th Conf. on 
Hydrology, New Orleans, LA, Amer. Meteor. 
Soc., 19 HYDRO J9.2. 

 
Rasmussen, R. and co-authors, 2012:  How well 

are we measuring snow? – The NOAA/FAA/ 
NCAR Winter Precipitation Test Bed.  Bull. 
Amer. Meteor. Soc., 93, 811–829.  

 
Ryzhkov, A. V., M. Diederich, P. Zhang, and C. 

Simmer, 2014: Potential utilization of specific 
attenuation for rainfall estimation, mitigation of 
partial beam blockage, and radar networking.  
J. Atmos. Oceanic Technol., 31, 599–619. 

 
Sieck, L. C., S. J. Burges, and M. Steiner, 2007: 

Challenges in obtaining reliable 
measurements of point rainfall, Water Resour. 
Res., 43, W01420, 
doi:10.1029/2005WR004519. 

 
Smith, J. A., D. J. Seo, M. L. Baeck, and M. D. 

Hudlow, 1996: An intercomparison study of 
NEXRAD precipitation estimates. Water 
Resour. Res., 32, 2035–2046. 

 
Steiner, M., J. A. Smith, S. J. Burges, C. V. 

Alonso, and R. W. Darden, 1999: Effect of 
bias adjustment and rain gauge data quality 
control on radar rainfall estimation. Water 
Resour. Res., 35, 2487–2503 

 
Tang, L., J. Zhang, C. Langston, J. Krause, K. 

Howard, and V. Lakshmanan, 2014: A 
physically based precipitation/non-precipitation 
radar echo classifier using polarimetric and 
environmental data in a real-time national 
system. Wea. Forecasting. doi:10.1175/WAF-
D-13-00072.1, in press. 

Wang, Y., P. Zhang, A. Ryzhkov, J. Zhang, P. 
Chang, 2014:  Utilization of specific 
attenuation for tropical rainfall estimation in 
complex terrain.  J. Hydrometeor., 
doi:10.1175/JHM-D-14-0003.1, in press.   

 
Wilson, J. W. and E. A. Brandes, 1979: Radar 

measurement of rainfall: A summary. Bull. 
Amer. Meteor. Soc., 60, 1048-1058. 

 
Zhang, J., and Y. Qi, 2010: A Real-time Algorithm 

for the Correction of Bright Band Effects in 
Radar-Derived QPE. J. Hydrometeor., 11, 
1157–1171. 

 
Zhang, J., and co-authors, 2011: National Mosaic 

and Multi-Sensor QPE (NMQ) system: 
Description, results, and future plans. Bull. 
Amer. Meteor. Soc., 92, 1321–1338. 

 
Zhang, J. and co-authors, 2014: Initial operating 

capabilities of quantitative precipitation 
estimates in the Multi-Radar Multi-System.  
Extended Abstract, 28

th
 Conf. of Hydrology, 

Amer. Met. Society, 2–6 Feb 2014, Atlanta, 
GA. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 



15 

APPENDIX: 
 
Summary of cool-season weather events evaluated.  Data evaluated was for a 24-hr period ending at 
1200 UTC and includes the northwest/southeast corners of the evaluated region.   
 

Date  NW/SE Box  
Coordinates  

Event Summary 

6 December 2013 42ºN, -103ºW 
29ºN, -77.7ºW 

Thunderstorms and wintry precipitation developed along and 
behind a strong cold front.  Precipitation stretched from TX  
northeastward into OH.     

7 December 2013 44ºN, -100ºW 
29ºN, -70.4ºW 

Precipitation re-developed along and behind a nearly stationary 
front.  By 1200 UTC on 7 December, sleet/snow blanketed OK 
northeastward into IL and with 50–250 mm totals and locally 
higher amounts.   

22 December 
2013 

44ºN, -103ºW 
29ºN, -73.4ºW 

Strong cold front affected the Plains, Mid-South, and Midwest 
with rainfall totals of 70–150 mm falling along the front and 100–
220 mm of snow behind it.  Some areas were impacted severely 
by freezing rain, especially central/southern MI. 

23 December 
2013 

42ºN, -94ºW   
29ºN, -68.7ºW 

Thunderstorms and heavy rain developed along a slow moving 
cold front over the Southeast and Mid-Atlantic states.  Rainfall 
totals ranged from 70–170 mm.    

6 January 2014 46ºN, -95ºW   
35ºN, -72.0ºW 

Moderate to heavy snow developed along and behind a cold 
front. Snow and rain fell from MO northeastward into New 
England with snow amounts as high as 350 mm in IN/MI.  

29 January 2014 40ºN, -94ºW  
28ºN, -71.0ºW 

Rain, freezing rain, sleet and some snow associated with 
developing low pressure fell across the southeast United States.  
Ice accumulations of 5 to 12.5 mm occurred near the coast.    

3 February 2014 45ºN, -102ºW  
29ºN, -70.2ºW 

Heavy rain and wintry precipitation fell along and behind a cold 
front that stretched from TX northeastward into the OH valley.   

5 February 2014 45ºN, -102ºW  
29ºN, -70.2ºW 

Heavy rain and wintry precipitation developed along and behind 
a weak stationary front stretching from the southeast into WV.  
Rain ranged from 30–80 mm from AR to KY.     

13 February 2014 42ºN, -92ºW   
29ºN, -66.7ºW 

Rain and wintry precipitation developed over the southeast 
United States and Mid-Atlantic states.   

3 March 2014 42ºN, -104ºW  
29ºN, -78.7ºW 

Rain and wintry precipitation developed along and behind a 
strong cold front stretching from TX to MD.  Rainfall totals of 40–
80 mm over AR to KY. Sleet and snow totals of 50–150 mm 
over portions of OK into MO.   

17 March 2014 40ºN, -96ºW  
28ºN, -73.0ºW 

Heavy rain, sleet and snow developed in response to a mid-
latitude cyclone tracking across the South.  Rain ranged from 
60–150 mm over AL/FL/GA.    

 


