
  

S123 Breakdown of ITCZ-like PV Patterns 
 

Ajay Raghavendra* and Thomas A. Guinn† 

Embry-Riddle Aeronautical University, Daytona Beach, Florida 

 
1. INTRODUCTION 

 

The band of elongated convection called the Inter 
Tropical Convergence Zone (ITCZ) is observed to 
undulate and breakdown into smaller disturbances that 
may potentially evolve into tropical cyclones (TCs) (see 
Fig. 6). The dynamics associated with the breakdown of 
idealized ITCZ-like potential vorticity (PV) patterns have 
been previously investigated in numerous barotropic 
studies (e.g., Guinn and Schubert, 1993; Ferreira and 
Schubert, 1997) as well as full physical model studies 
(e.g., Wang and Magnusdottir, 2005). This paper 
expands the previous barotropic studies by introducing 
irregularities in the PV pattern representing observed 
irregularities in convective activity within the ITCZ (see 
Fig. 1).  This study also investigated the effects of 
asymmetry on the evolution of PV strips of finite length 
again representing ITCZ-like structures. While the 
barotropic nature of the model is incapable of capturing 
all the processes such as moisture physics, they retain 
many of the fundamental dynamics.   

 

 
Fig. 1. A GOES 15 IR image of the ITCZ. The bright colors are 
indicative of non-uniform convection along the ITCZ. 

This paper is organized as follows: Section 2 
describes the shallow water equations (SWEs) and the 
numerical aspects of the model. A brief description of 
the mass sink has also been introduced in this section. 
Section 3 discusses the initial condition common to all 
six simulations presented in this paper followed by initial 
conditions unique to each simulation. Section 4 
compares the results obtained from the six simulations. 
A summary of the model results followed by concluding 
remarks is presented in Section 5. 

  

2. MODEL DESCRIPTION 
 

A normal mode spectral model was developed to 
solve the SWEs in Cartesian coordinates on an 𝑓-plane 

(10˚ latitude) using a doubly periodic domain  0 ≤ x ≤
Lx, 0 ≤ y ≤ Ly  where  Lx and Ly represent the length and 

width of the model domain.  
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In equations (1)-(3), 𝑢 and 𝑣 represent the zonal 

and meridional component of the velocity vector, 
respectively, 𝑔 the acceleration due to gravity, 𝑓 the 

Coriolis parameter, ℎ the fluid depth, 𝑆 the effects of 

convective heating (mass sources or sinks) and 𝜅 the 

diffusion constant.  
 

The technique used solve equations (1)-(3) in the 
normal-mode method identical to Guinn (1992) and 
Guinn and Schubert (1993). All simulations were 
conducted on a 6,400km × 6,400km domain with 512 × 
512 grid points. Time integration was performed using a 
fourth-order Adams-Bashforth-Moulton predictor-
corrector scheme. The run time for each simulation was 
120 hours with a 60s time step.   
 

To prevent aliasing of quadratically non-linear 
terms, 170 waves were retained resulting in an effective 
horizontal resolution of approximately 37km.  To reduce 
spectral blocking, ordinary diffusion was included i.e. 

𝜅𝛻2𝑢, 𝜅𝛻2𝑣 and 𝜅𝛻2ℎ on the right hand side of equations 
(1)-(3). The diffusion constant was chosen such that 
waves with total wavenumber 170 e-folded every 53 
minutes.   
 

The simulation of convection and resulting PV was 
achieved by introducing a mass sink in the continuity 
equation. In the shallow water framework, PV is given 
as: 
 

𝑃𝑉 =
(𝜁 + 𝑓)

ℎ
   , 

 

where 𝜁 is the relative vorticity, 𝐻 is the mean fluid depth 

and ℎ is the fluid depth.  
To see the analogy between shallow water PV and 

Ertel’s PV, consider the vertical contribution to Ertel’s 
PV, which is 
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where 𝜌 is the density of the fluid, 𝜁 is the relative 

vorticity, 𝑓 is the Coriolis parameter and 𝜃 is the 

potential temperature. Ertel’s PV can be thought of as 
the absolute vorticity divided by the height difference 
between two 𝜃-surfaces (𝑧).  In the real atmosphere, 
convection results in latent heat of condensation i.e., 

diabatic heating increases the vertical 𝜃 gradient 
resulting in smaller distances between 𝜃 surfaces. In the 

shallow water framework this is closely analogous to 
shallower fluid depth. Therefore, convection can be 
simulated in a predetermined region by introducing a 
mass sink that locally decreases the mean fluid depth.  
 

3. INITIAL CONDITIONS 
  

Four variations of infinite strips and two finite strips 
(six cases in total) were developed to describe the initial 
distribution of vorticity in the domain (see 3.1-3.6 for the 
description of each case). Sharp gradients and 
discontinuities in the initial disturbance or mass sink 
result in model noise due to Gibbs phenomena. This 
problem is solved by describing our initial disturbances 
and sinks using piecewise continuous functions that 
were at least second order continuous. Following 
Shubert et.al (1999), a Hermite polynomial of the form 

𝑃(𝑥) = 1 − 3𝑥2 + 2𝑥3 where 𝑥 ∈ {0, 1} was used to 
smoothly transition the vorticity patterns from their 
maximum value at the perimeter of the strip to zero over 
a specified distance. This technique was also utilized to 
smoothly dampen the mass sink from the region of 
maximum heating to zero heating over a specified 
distance. Using the non-linear balance equation (e.g. 

Guinn and Schubert 1993 and DeMaria and Schubert, 
1984; for a detailed explanation see Thelwell, 2001) the 
velocity and height fields were obtained from the initial 
vorticity field. 
 

 
Fig. 2. Plot of the cubic Hermite Polynomial 𝑃(𝑥) = 1 −

3𝑥2 + 2𝑥3. Note that 
𝑑 

𝑑𝑥
𝑝(𝑥) = 0 𝑎𝑡 𝑥 = 0 𝑎𝑛𝑑 1. 

         In general, if 𝑝(𝑎, 𝑏) describes the closed two 

dimensional perimeter of the initial vorticity field (where 
(𝑎, 𝑏) represent the set of all points that lie on or inside 

the perimeter 𝑝) and, 𝑑 is the outward perpendicular 

distance from  𝑝(𝑎, 𝑏) over which the cubic Hermite 

polynomial (𝐻𝑟) smoothly decreases the vorticity from 

some constant value 𝜁o to zero, the initial vorticity field is 

given by: 
 

 

 
 

Since the model is doubly-periodic in both 𝑥 and 𝑦, 

the net circulation must be zero, which requires the 
domain-averaged vorticity be zero.  This is achieved by 
creating the initial vorticity shape then zeroing the 
spectral coefficients corresponding to the mean (i.e., 

wavenumbers zero). This introduces a weakly negative 
background vorticity field, which is minimized by using a 
larger than necessary model domain. 
 

3.1 Case 1 
 

An infinite strip 400km wide that includes the last 
100km of each side of the strip gradually tapering to 
zero following the Hermite polynomial (see Fig. 2). The 
inner 200 km wide region is a strip of uniform vorticity of 
value 7.5×10-5s-1.  This gives us a domain average 
vorticity of 3.515×10-5 s-1. The results from this simple 
case served as a verification for the proper function of 
the model (e.g. Guinn, 1992; Guinn and Schubert, 1993; 
Ferreira and Schubert, 1997) and provided a foundation 
for all other comparisons. To accelerate the breakdown 
of the vortex pattern, a wave number 16 broadband 
perturbation (e.g. Schubert et al., 1999) with a 
magnitude of 0.3% of the maximum vorticity was added 
to the strip.  
 

3.2 Case 2 
 

Similar to Case 1 except the inner 200km wide 
region was a strip of uniform vorticity (7.4×10-5s-1), and 
10 circular regions of higher vorticity (1.7×10-5s-1) with 
uniform spacing were embedded along the center of the 
strip. The radius of each circular region was 40km, and 
similar to the infinite strip, a Hermite polynomial is used 
to decrease the vorticity over an additional 40km. To 
effectively study the variations in PV rearrangement of 
various strips, calculations were made to ensure the 
domain average vorticity of this disturbance is similar to 
Case 1. 

 

3.3 Case 3 
 

Identical to Case 2 except the 10 circular regions 
of higher vorticity were randomly spaced near the center 
of the strip. There also exists up to a ±10% random 
variation in the magnitude of the vorticity in each circular 
regions of higher vorticity.  

 

3.4 Case 4 
 

Identical to Case 1 except there was no 
broadband perturbation and ten uniform linearly spaced 
circular mass sinks were positioned along the center of 
the strip. The individual mass sinks each had a radius 
40km with a Hermite polynomial used to decrease the 
magnitude of the sink over an additional 40km. The 



shape of the circular sinks, 𝑄(𝑥, 𝑦), followed the same 

format as the shape of the vorticity pockets in case 3 
and as shown in Fig. 3. At its peak value, fluid was 
drained at the rate of 0.017ms-1 to simulate heating of 
10K per day.  Figure 4 shows the time profile of the sink. 
In this simulation, the sink was initiated at 0hrs, 
achieved its peak value at 12hrs, maintained peak 
heating over the next 6hrs and decreased to zero over 
an additional 12hrs. The sink was active for a total of 
30hrs. The mathematical functions used to achieve such 
variations in the mass sinks were given by: 

 

𝑆(𝑥, 𝑦, 𝑡) =  

{
 
 

 
 
  𝑄(𝑥, 𝑦) 𝑒𝑎(𝑡−𝑡2) if 𝑡1 ≤ 𝑡 ≤ 𝑡2

𝑄(𝑥, 𝑦) if 𝑡2 < 𝑡 ≤ 𝑡3             

  𝑄(𝑥, 𝑦) 𝑒−𝑎(𝑡−𝑡3) if 𝑡 > 𝑡3      

 

 
where, 𝑡1, 𝑡2 and 𝑡3 represent the time at which the sink 

was turned on, maintained at a steady state and started 
to decrease respectively.    

 

 
 

Fig. 3. Visualizing a pocket of vorticity in Case 2 and 3 of this 
section. (a) A sketch of the vortex pocket that consists of 
concentric cylinders of radii 𝑟1 and  𝑟2 and, the Hermite 
Polynomial smoothly reducing the value of vorticity over a 
radial distance from 𝑟1 to  𝑟2. (b) A 3D plot of the packet of 
vorticity. 

 
Fig. 4. Time variation of the heating function for Case 4 

3.5 Case 5 
This shape was a modification to Vaughan and 

Guinn (2013) where a symmetric “twinkie”-shaped finite 
strip of PV was studied. The motivation to study the 
asymmetric “twinkie”-shaped PV field stems from its 

climatological persistence (e.g. Waliser and Gautier, 
1993 and Salby, 1991) and visual similarities to the 
ITCZ observed near the tropical eastern pacific. The 
time lapse diagrams in Fig. 7 provides an example of 
the reoccurring ITCZ pattern unique of the eastern 
Pacific region. 
  

The lopsided “twinkie”-shape can be described as 
follows: the centers of two circles of radii 500km and 
100km are separated by a distance of 2800km. Two 
exterior tangent lines connect the circles. The resulting 
outer perimeter describes the shape of the initial 
vorticity field (see Fig. 5). Similar to the previous initial 
conditions, a Hermite Polynomial smoothly reduces the 
value of vorticity from the peak value of 5.85×10-5s-1 to 
zero over a distance of 100 km. The area average 
vorticity is equal to Case 1.  

 

 
Fig. 5. Illustration of the lopsided Twinkie shape. Two circles 
with centers C1 and C2 and radii R1 and R2 separated by a 
distance "𝑑". The shape of the initial vorticity field takes the 
form of the shaded portion in the above figure. Similar to 
other disturbances, a cubic-Hermite polynomial is used to 
gradually weaken the strength of the vorticity over a 
predetermined distance.  

3.6 Case 6 
 

A finite “twinkie”-shaped strip of vorticity similar to 

Vaughan and Guinn (2013). This case helps in making a 

comparison to case 5. The area of the strip and domain 

average vorticity is equal to case 5.   

4. RESULTS 
 

The evolution and breakdown of the three infinite 
strips carry subtle differences while on the other hand, 
the breakdown of the finite strips is differs significantly 
from each other. The differences in the results from the 
6 cases are documented in this section. Please refer to 
Fig. 8-13 for illustrations showing the time evolution of 
PV at 0, 24, 48, 72, 96 and 120 hrs. for all six cases.  
 

4.1 Case 1 
 

According to linear stability theory for an infinite 
strip of uniform vorticity, the wavelength of the most 
unstable mode is approximately 8 times the width of the 
strip (Rayleigh, 1945; Guinn and Schubert, 1993). For a 
uniform infinite strip of width 200km, 300km and 400km, 
linear theory predicts the strip to breakdown into 



approximately 4, 2.6̅ and 2 disturbances, respectively, 
for a domain length of 6,400km. However, as described 
in section 3.1, the infinite strips of vorticity are not 
piecewise continuous step functions in 𝑥 as in the linear 

stability analyses performed by Rayleigh (1945). A step 
function in 𝑥 of uniform vorticity and width 300km would 

produce an identical domain averaged vorticity to the 
infinite strips presented in Cases 1-4. It is therefore 
reasonable to expect 2 to 4 disturbances to develop with 
3 disturbances being favored in the breakdown of the 
infinite strips presented in this paper (Fig. 8-11). The 
evolution of the PV is similar to Guinn and Schubert 
(1993).  
 

4.2 Case 2 
 

In spite of the higher pockets of vorticity 
embedded along the infinite strip, there is little 
difference in the evolution and re-arrangement of PV. 
The 10 pockets of higher PV are sheared into a single 
strip and the end result is very similar to that of Case 1 
(Fig. 9). In fact, it was noted in trial simulations (not 
shown) that the breakdown of the strip was more 
sensitive to the broadband perturbation than the 
magnitude of the circular regions of higher vorticity.  

 

4.3 Case 3 
 

  The random spacing of the pockets of vorticity 
resulted in non-uniform pooling of vorticity along the 
strip. This resulted in a tendency to breakdown into four 
disturbances. However, it was noted in simulations with 
longer run times that the strip eventually breaks down 
into three disturbances. Towards the end of the 
simulation (see Fig. 10), the forth disturbance is unable 
to develop, sheared and merges with the neighboring 
disturbances. The random spacing of the circular 
regions of higher vorticity did little to alter the evolution 
the strip. 
 

4.4 Case 4 
 

Despite the lack of a broadband perturbation, the 
evolution of the strip was very similar to Case 3 (Fig. 
11). This also suggests that the steady generation of PV 
via the mass sink is a superior perturbation mechanism 
when compared to the circular regions of higher 
vorticity. 
 

4.5 Case 5 
 

The region with the larger pool of vorticity (eastern 
portion) is initially pushed north and later engulfs the 
strip tapering near the southwest. The lopsided PV 
shape is suggestive of the breakdown of the ITCZ and 
formation of TCs observed in the Eastern-Pacific. 
Similar to the satellite time lapse (Fig. 7) the thin 
tapering strip of vorticity extending from the center of 
circulation shows little movement. This case also 
suggests barotropic processes are important in the 
evolution and breakdown of the ITCZ. By noting the 
difference in evolution between Case 5 and 6, we can 
conclude the shape of the finite strip also plays a key 
role in determining the end result.  

 
 

4.6 Case 6 
 

The breakdown of the finite strip is similar to 
Vaughan and Guinn (2013) for the same length to width 
ratio. Given the symmetry of the strip and nature of the 
numerical model, the strip broke down into two pools of 
uniform vorticity. It is interesting to note that in multiple 
variations of Case 5 (lopsided strips), no such split was 
observed.  

 

5. SUMMARY AND CONCLUSIONS  
 

It is noteworthy to mention the following quote by 
S. G. H. Philander et al. (1996) 

“The most complex models are capable of 
the greatest realism, but their results are difficult 
to analyze explain. It is therefore important to 
have simpler models that by excluding certain 
processes, sacrifice realism, but in return allow 
detailed analysis and yield physical insight into 
the retaining processes” 

 While the normal mode barotropic model with 
and 𝑓-plane approximation is unable to serve as a 

reliable forecasting tool, it offers excellent insight from 
a theoretical standpoint and is still prevalent in 
understanding TC dynamics (e.g. Hendricks et al., 
2014).  Given the barotropic nature of the tropics, the 
SWEs are capable of capturing many of the larger 
scale dynamics (e.g. Case 5) and offer meaningful 

insights with regard to the underlying dynamics.  
 

One of the objectives of this project was to 
develop a normal-mode spectral model in a new 
generation user-friendly programing language that can 
be used for both education and research. The Fast 
Fourier Transform and matrix manipulation methods in 
Mathwork’s MATLAB made it an ideal choice for this 
research project and future research work. Please 
contact the author if you are interested in obtaining a 
copy of the MATLAB scripts used for this project.  
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Fig. 6. GOES IR images at 1646 UTC on (a) 26 July, (b) 28 July, (c) 3 August, and (d) 12 August 1988 showing a 
case of ITCZ breakdown. Credit to Ferreira and Schubert (1997) 

(a) 

(b) 

(c) 

(d) 



 

Fig. 7. A Time Lapse of an ITCZ Breakdown occurring between 30 Aug and 4 Sep 2014. GOES-15 IR images at 
0000 UTC and 1200 UTC between 30-August and 4-September-2014 showing a case of ITCZ breakdown in the 

Eastern-Pacific.    



 

 

Fig. 8. Case 1: PV evolution of an infinite strip 400km wide with a wavenumber 16 broadband perturbation. 

 

Fig. 9. Case 2: PV evolution of an infinite strip 400km wide with 10 circular uniform spacing regions of higher PV 
embedded along the center of the strip. 



 

Fig. 10. Case 3: PV evolution of an infinite strip 400km wide with 10 circular randomly spaced regions of higher PV 
embedded near the center of the strip. 

 

Fig. 11. Case 4: PV evolution of an infinite strip 400km wide with 10 circular uniformly spaced mass sinks along the 
center of the strip. 



 

Fig. 12. Case 5: PV evolution of a finite non-uniform region of vorticity. 

 

Fig. 13. Case 6: PV evolution of a finite uniform region of vorticity (Twinkie shape). 

  


