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Before applying a formula for asserting the “significance” of an observation, some preparations
are needed, mostly the formulation of a null-hypothesis, which (in most cases) is hoped to be
rejected. This null-hypothesis includes the assumption that a variable considered would be
random and governed by a certain probability distribution. When we want to find out if an
“observation” of interest is in contradiction to the null-hypothesis, then we determine if this
observation is in the tails of the probability distribution used in the null-hypothesis. In that case,
we call the tested observation as “significant”, or more precisely, “significantly inconsistent with
the null-hypothesis”. For doing so, we must in principle be able to identify all possible outcomes
of the random variable. This is a non-trivial assumption; if there is a group of outcomes which are
for whatever reason not accessible, we reject the null-hypothesis “a member of this group” too
often. When we sample all admissible outcomes, we may estimate the probability distribution,
and the quality of the estimation process is taken into account when conducting the hypothesis
test. But if the sampling process is biased in some way, the uncertainty of the estimation may be
underestimated. This is the case, when data are (even weakly) serially correlated, as is almost
always the case in climatic applications. The technical part of the testing, namely the calculation
of the measure of consistency (the “test statistic”) is in most cases simple, once the probability
distribution is known or can be generated through Monte-Carlo simulation.

A very common problem is that of the “Mexican Hat”, namely that the formulation of the null-
hypothesis is done after it the variable to be tested is known to be a rare outcome; also the issue
of multiple tests is not always taken care of sufficiently. Another problem is that the word
“significance”, which is used for indicating that the null-hypothesis is unlikely to apply to the
tested observation, is understood in its colloquial meaning, namely that the inconsistency is
relevant, even if there is no such link. In the presentation, the general principle of hypothesis
testing is worked out, the assumptions are made explicit and examples of disregarding these
assumptions discussed.
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Frequentists’ approach for determining
consistency of data and assumptions

Consider a variable X, which has some properties, and an observation a.
Question: Is a consistent with X?

For deciding, we consider X a random variable, i.e., an infinite number of
samples x of X can be drawn. We know which values X can take on, and we
know the probabilities of all possible outcomes x, i.e., P(x).

A subset ¢ of x’s is determined so that fg P(x)dx = o, with a small number
Q.

If a ec, then the probability for any sample drawn from X to be equal
(close) to a is less than a..

If we have chosen a “sufficiently small”, which is an entirely subjective
judgement, we decide to consider a to not to be drawn from X, or in other
words: a is significantly different from X.



When ...? — global models ... 1970s

The first literature demonstrating the need for testing the results of
experiments with simulation models was ..

Chervin, R. M., Gates, W. L. and Schneider, S. H. 1974. The effect of time
averaging on the noise level of climatological statistics generated by
atmospheric general circulation models. J. Atmos. Sci. 31, 2216-22109.

Chervin, R. M. and Schneider, S. H. 1976a. A study of the response of
NCAR GCM climatological statistics to random perturbations: estimating
noise levels. J. Atmos. Sci. 33, 391-404.

Chervin, R. M. and Schneider, S. H. 1976. On determining the statistical
significance of climate experiments with general circulation models. J.
Atmos. Sci. 33, 405-412

Laurmann, J.A, and W.L. Gates, 1977: Statistical considerations in the
evaluation of climatic experiments with atmospheric general circulation
models, J. Atmos. Sci., 34: 1187-1199



Usually the t-test is used to determine if a number of

sampled data contradict the hypothesis that the

expectation, or population mean of the data would

be zero.

- We assume a normally distributed random variable
Y with an expectation (mean) u =0 and standard ¢

- We repeat the random variable n-times, labelled Y,

. Y,—anyY, generates realizations independent

of all other Y,. All possible outcomes of Y may
emerge as realizations, with a probability given by
the distribution of Y

1

Then, we form the sample mean X = ir, Y. and the
L 1

sample variance $? =— ;=1 (Y; — X)?

Then, t = X/(S +/1/») is a random variable, which is
described by the t-distribution with n-degrees of
freedom.

If we have a sample of nvaluesy, ... y,, which have
been sampled independently and identically (from the
same Y), then a “loo large” or “too small” t-value, this
is considered evidence that the

expectation of X = expectationof Y= #0
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Figure 2.6: Frobability density functions for
t(k) random variables with 1, 2, 10, and 30
degrees of freedom.



Probability for erroneously rejecting a null
hypothesis is a

In many case, an a of 5% is chosen (social inertia).

Thus, when | do 1000 tests, and in all cases the null hypothesis is true, |
must, on average, iin 50 cases reject the null hypothesis — erroneously.

If | do not so, my test is false.

If all decisions are independent, the number of such false decisions is
binomially distributed.

But decisions are often not independent, in particular, when a field of
locations or of variables is screened (multiplicity) — see later.



Pitfall 1 — Choose ¢ so that it includes a .

Mexican Hat —a unique stone
formation — 4 stones in vertical order
reminding on a Mexican hat. This is a.

Hypothesis: It is drawn from the
ensemble X of natural formations

We determine the frequency of
formations like ain X by sampling 1
million stone formations. Since a is
unique, this frequency is 1/million.
With ¢ = {like a}, we find P(g) ~ 107,
and we conclude a¢g, or ...

... the Mexican Hat is significantly
different from natural formations.

By considering your finger print, | can
demonstrate that you (all of you) are
significantly non-human.
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Figure 6.8: Creation of the Mexican Hat: Null hypothesis correctly rejected!



More general (in 1-d):

) +
Determine a small € so that faa_: P(x)dx = 1-a so

that ¢ = [a-¢, a+¢] and aec. All a are declared
“significantly different from X”.

To make sense, the choice of the critical domain ¢
must be done without knowing the value of a.

We can define a critical domain ¢ by asking for a
region with low probability densities (e.g., for
“abnormally” large or small values), or we can ask
for a region, which seems suitable to focus on
because of physical insight or prior independent
analysis (such as “rare and positive”).

When dealing with multivariate phenomena, we
have much more choices, because testing cannot
be done with many degrees of freedom when
noteworthy power is asked for.

Figure 6.1: Schematic diagrams illustrating the
domains for which the null hypothesis X is
drawn from X' is accepted. The shaded area
represents the non-rejection region ®(95%) =
{&: f(&) > agsy } (a) univariate distribution;
(b) bivariate distribution. The points x’ and
X' are examples of realizations of the sampling
process that provide evidence contrary to the
null hypothesis, whereas the realizations x”
and X" are consistent with the null hypothesis

[396],



How to determine a dimensionally reduced c in
a multivariate set--up?

e Use part of the phase space where the dynamics are concentrated (e.g.,
given by EOFs)

* Use physical insight, what would constitute evidence against an X-regime

e |If you can multiply generate a, use a first a for determining ¢, and then
draw another independent a to conduct the test.

However, in most cases of climate studies, we cannot draw multiple
independent a’s from the observed record. Instead because of earlier
studies, maybe by others, we already know if an event is “rare” or not.
Because of (long-)memory in the climate system, the waiting time needed
for the next independent realization of a may be very long. In that case we
are in a Mexican Hat situation.

In most cases, when we deal with model simulations, we can generate
multiple, independent a’s.



Pitfall 2: “Significance of climate change
scenarios”

 There have been some attempts to qualify changes of some variables in
climate change scenario simulations as “significant”.

e The problem is X = outcome of climate change scenario simulation may
hardly be considered a random variable, which may be sampled such that
“All possible outcomes of X may emerge as realizations, with a probability
given by the distribution of X”.

e We may want to limit X to simulations dealing with a specific emission
path, say a specific emission scenario used by CMIP.

e (Can we describe “all possible outcomes”? What is the set of all
(admissible) scenario simulations?

Obviously, we cannot describe all possible outcomes, as we cannot say
which models are “good enough”, and which unavailable models would be
good enough but rather different from available ones.

von Storch, H. and FW. Zwiers, 2013: Testing ensembles of climate change scenarios for "statistical significance". Climatic Change
117: 1-9 DOI: 10.1007/s10584-012-0551-0



Significance of scenarios ...

Il(

Thus, when we consider all “possible and admissible climate change scenario
simulations” as X, we speak about an undefined set-up. A sampling satisfying
“All possible outcomes of X may emerge as realizations, with a probability
given by the distribution of X” is impossible;

Thus statistical testing of the hypothesis “scenario simulations using
emission Scenario B1 indicate no positive shift of extreme rainfall amounts”
is not possible.

What can be done, is limiting all simulations to a specific model (specific
version and set-up), for which all possible pathways may be generated through
variations of initial values and of some parameters. Then, significance of the
scenarios can be established for that specific model — which is much less than
“all scenario simulations”.

If such an assessment is interesting, is another issue. Whenever the model is
replaced by a new version, the testing needs to be repeated. Other models
may show contradicting “significant” changes.



Pitfall 3: Serially dependent sampling

In case of the test of the mean, we can derive the
s e 1 .
probability distribution of X = ir, Y, if the null-

hypothesis is valid and if sampling Y; generates
realizations independent of all otherY;.

In many cases of climate research, the latter
assumption is not fulfilled

Because of the inherent (long) memory in the
Earth system.

Even small serial dependencies leads to the
association of too much weight of the data against
the null-hypothesis of zero mean (liberal test.

Using the concept of an “equivalent sample size”
(using a t-distribution with modified number of
degrees of freedom) helps little — when the “true”
autocorrelation is used, the test becomes
conservative, when an estimated autocorrelation
is used, it becomes “liberal”. Use “table-look-up
test” by Zwiers and von Storch).
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Figure 6.11: The reject rate percentage of the
one-sample t test when the observations are auto-
correlated (see text). The ‘equivalent sample size’
n’ is given by (6.26) (thin curve) and is estimated
with (6.26) (thick curve).

Zwiers, FW., and H. von Storch, 1995: Taking
serial correlation into account in tests of the
mean. - J. Climate 8, 336-351



Pitfall 3: Serially dependent sampling

unfiltered data

— detecting trends TREAAIEAERIREA0E.
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Fig. 1. Probability to reject the null hypothesis of “no trend” with
the Mann-Kendall test{or 1000 samples of cases withouta trend
(“risk™) and for 1000 samples with a prescribed wend (0.003 x #;
) ) “power”). Different ime series lengths (s = 100 and » = 200) and
Kulkarni, A., and H. von Storch, 1995: Monte Carlo experiments on different AR-coefficierns ware prescribed. — Top: Results obrai-
the effect of serial correlation on the Mann-Kendall-test of trends. - ned with unmodified data. Bottom: Results after “prewhitening”

Meteor. Z 4 NF 82-85 (5) the data prior to the test.



Pitfall 3: serially dependent sampling
— detecting change points anfitered data
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Fig. 10. Refection rates of the Pettiit test of the null
hypothesis “no change” when applied 1o 1000 time series
of length n=100 and »n=500 generated by an
AR{1)}-process {7) with prescribed o The adopted nom-

Busuioc, A. and H. von Storch, 1996: Changes in the winter precipitation ~ ihal risk of the test is 5%. Top: results for unprocessed
in Romania and its relation to the large-scale circulation. - Tellus 48A, serially correlated data. Bottom: resulis afier prewhiten-
538-552 ing the data (8§).



Often, many tests are done at the same time,
e.g., when comparing an experimental
simulation.

Then multiple local test are done, and the
“points” with a “local rejection” are marked.

If the null-hypothesis of “zero mean
difference” is valid at all points, at 5% of all
points the null must be rejected if the test
operates at the 5% level and is correctly set
up.

The number of such false rejection is itself a
random variable; if the result at all points
would be independent, the number of false
rejections would follow a binomial
distribution; however independence is in
most case not given, and the distribution can
be much broader (von Storch, 1982).

Livezey and Chen (1983) have suggested a
rule of thumb for deciding if “global”
significance is given.

Pitfall 4 — Multiplicity:
many “local” tests

Figure 6.10: The spatial distribution of false
rejections of local null hypotheses in a Monte
Carlo experjment [384} All local nulls are valid.

von Storch, H., 1982: A remark of Chervin/Schneider's
algorithm to test significance of climate experiments with
GCMs. J. Atmos. Sci. 39, 187-189

Livezey, R. E. and W. Y. Chen, 1983: Statistical field
significance and its determination by Monte Carlo
techniques. Mon. Wea. Rev. 111, 46-59



Pitfall 5 — relevance () and sample size

The probability for rejecting the null-hypothesis (power), if its actually
invalid, increases with larger samples sizes.

Thus, in case when the size of sample sizes is related to resources, then
... a lab with limited computational resources will have fewer samples,
thus less often rejection of annul-hypotheses, and will report less often
“significant differences form observations” and “significant effects of an
experimental change”

... and vice versa: many samples make models more often significantly
different from observed data, and seemingly more sensitive to
experimental changes.

In short:
- poor labs have good, insensitive models,
- rich labs have bad, sensitive models.



Numerical experiment — on the effect
of ocean wave dynamics on
atmospheric states in the North
Atlantic.

Regional atmospheric model,
simulations with standard
parameterization of ocean waves, and
with explicit ocean wave dynamics.

Measure of effect: X = daily standard
deviation of SLP.

Comparison of two 1-year simulations

Mean AX shows two episodes with
large spatial differences in January
and July.

Differences in January show
modifications of dominant storm —
physical hypothesis: storm
characteristics depend on wave
parameterization.

Pitfall 5 - Significance =
relevance
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Fig 5. SLP in hPa at D600 UTC at 13, 14, and 15 Jan (fror top to bottom) from (left) the 1-3r ESD and (middle) the 1-37 CTR
simulation together with (right) the local SLP differences in hPa between both simulations

Weisse, R., H. Heyen and H. von Storch, 2000: Sensitivity of a
regional atmospheric model to a sea state dependent roughness
and the need of ensemble calculations. Mon. Wea. Rev. 128: 3631-
3642



Pitfall 5 - Significance =

Are the differences in AX significant?

— Can we reject the null-hypothesis relevance
that the large differences are covered .. ;
T L T ol B
by the natural variability within the 2 ;J’
simulations? oo A N
For January, 2 x 6 simulations with the =V A
Same model’ With Standard 1]13.’9\:4 13JAN  15JAN ITIAN  [19JAN  21JAD 23JAN  25JAD 2734l .[:.:I.U
. . . Fie. 7. The § s?atilstic (5)_ for {solid) bias_ and (dashed) rmsd. The 95?_":. co_nﬁdence interval is
parameterlzatlon and another Wlth indicated in gray. The points & and B are referred to in Fig. &,

Mean differences AX at
time A (top) and B
(bottom) — isobares;
| Local significance

| indicated by stippling.

dynamic formulation of waves
Noise levels instationary.

When the mean differences AX is
large, also the simulations show large
ensemble-variability: synoptic
situation unstable. Null not rejected.

At the end of the month AX is small,
and the null is rejected. Difference in
employed parameterizations

significant, but signal is small and

H H 4 Weisse, R., H. Heyen and H. von Storch, 2000: Sensitivity of a
insignificant. ) ver v vty
regional atmospheric model to a sea state dependent roughness
and the need of ensemble calculations. Mon. Wea. Rev. 128: 3631-
3642




Take home ..

Statistical hypothesis testing has become a standard routine in the
assessment of global model simulations in climate science in the past 50
years.

Regional modelers were late; only since about 2000 the practice is slowly
entering the community.

Here: frequentist approach — inductive conclusions constrained by some
distributional and sampling assumptions.

Example here — t-test, but a large number of approaches are in use.
Pitfall 1 — Critical region (of rejection) chosen with knowing the signal.
Pitfall 2 — “Significance of scenarios”

Pitfall 3 — (Serial) dependent sampling

Pitfall 4 — (Many) multiple tests

Pitfall 5 — Significance = relevance



