

## AMS Annual Meeting, New Orleans 12. Innovative Measurements



## Tropical Cyclone Forecast Skill Impact Simulations with the NASA CYGNSS Constellation

Chris Ruf<sup>1</sup>, Robert Atlas<sup>2</sup>, Sharan Majumdar<sup>3</sup>, Zhaoxia Pu<sup>4</sup>

- 1. University of Michigan, 2. NOAA/AOML,
- 3. University of Miami, 4. University of Utah











### **CYGNSS Mission Overview**

- The Cyclone Global Navigation Satellite System (CYGNSS) is the first NASA Earth Venture Mission
- CYGNSS consists of 8 microsatellites, each with a 4-channel GPS bi-static radar receiver
  - Mission lead/Science Ops (University of Michigan)
  - Spacecraft/Integration/Mission Ops (Southwest Research Institute)
- The driving science objective is rapid sampling of ocean surface winds in the inner core of tropical cyclones
- CYGNSS uses a new measurement technique and a new satellite mission architecture
  - Measure the distortion of GPS signals scattered from the ocean surface to determine ocean surface roughness and wind speed
  - Use small satellites so many can be flown to improve sampling





# CYCLES

## Spaceborne Empirical Demonstration of Ocean Wind Speed Retrievals by GNSS-R

GNSS-R instrument (early version of CYGNSS science payload) deployed on UK-DMC-1 mission, launch 2003







Winds 7 m/s



Winds 10 m/s





## CYGNSS Specular Point Contacts and Spatial Sampling













### **CYGNSS Spatial Sampling**

- 90 min (one orbit) coverage showing all specular reflection contacts by each of 8 s/c
- 24 hr coverage provides nearly gap free spatial sampling within +/- 35 deg orbit inclination







### **CYGNSS Temporal Sampling**



- Sampling occurs randomly due to the asynchronous nature of the CYGNSS and GPS satellite orbits
- Revisit time is characterized statistically from these distributions
- The median and mean revisit times are, respectively, 2.8 and 7.2 hours.





## Level 1 Baseline Mission Science Requirement

| Sci<br>Rqmt# | Requirement                                                                             | Verification Approach    |
|--------------|-----------------------------------------------------------------------------------------|--------------------------|
| 1            | 3 m/s to 70 m/s at 5 km x 5 km resolution                                               | Simulation/Analysis/Test |
| 2            | Operation in presence of rain                                                           | Analysis                 |
| 3a           | 10% retrieval uncertainty for winds > 20 m/s                                            | Simulation/Analysis/Test |
| 3b           | 2 m/s retrieval uncertainty for winds < 20 m/s                                          | Simulation/Analysis/Test |
| 3c           | Spatial Resolution of 25 km x 25 km or better                                           | Simulation/Analysis      |
| 4a           | 100% duty cycle during science operations                                               | Analysis/Test            |
| 4b           | Mean temporal resolution less than 12 hours                                             | Simulation/Analysis      |
| 4c           | 24 hour spatial sampling covering 70% or more of the cyclone historical track           | Simulation/Analysis      |
| 5            | Calibrate and validate CYGNSS data in individual wind speed bins above and below 20 m/s | Simulation/Test          |
| 6            | Support operational hurricane forecast community                                        | Demonstration            |





## OSSE Forecast Skill Impact Assessment (Atlas and Majumdar)

#### **OSSE Framework Details**

- Nature Runs: ECMWF low-res T511 (~40km); WRF-ARW hi-res 27km regional domain, 9/3/1 km storm-following nests (v3.2.1)
- Data Assimilation: GSI: Gridpoint Statistical Interpolation, standard 3D variational assimilation scheme (v3.3)
- Forecast Model: 2014 'operational' Hurricane-WRF model (v3.5). Parent domain has 9km res, single storm-following nest @ 3km
- DA and model cycling every 6 hr, each run producing a 5-day forecast (except for higher-freq cycling exp)
- **CONTROL**: conventional data sans scatterometers
- **CYG SPD**: (C + CYGNSS wind speeds, no direction)
- **CYG VEC**: (C + CYGNSS wind speeds with VAM analysis directions)
- VAM VEC: (C + VAM analysis wind speeds and directions at CYGNSS retrieval coordinates)



6 HRL storm statistics

• Directional information added to CYGNSS wind speeds using 2D Variational Analysis Method (VAM); Creates gridded wind analysis by minimizing a cost function that measures the misfit of the analysis to the background, data, and *a priori* constraints





## Cycling Frequency Statistics (CYG SPD)

(Atlas and Majumdar)

Observations binned into X-hour windows (synoptic time +/- X/2 hours), DA performed every X hours, 5-day forecasts produced every 6 hours

- 6 HOURLY
- 3 HOURLY
- 1 HOURLY







## OSSE Study: CYGNSS surface winds v. Lidar 3-D wind profiles (Zhaoxia Pu)

**HWRF track and intensity forecasts** (18 UTC 01 – 18 UTC 04 Aug 2005) **with HWRF/GSI data assimilation** (12-18 UTC 01 Aug, 2005)



- Both ocean surface wind and 3D wind have positive impact on tropical cyclone forecasting in terms of track and intensity.
- 3D winds outperform ocean surface winds. However, since CYGNSS can see through the clouds, its benefit is still obvious.









### **CYGNSS Mission Status**

- Phases A/B/C complete
  - Define requirements (A), Preliminary flight segment design (B), Critical flight segment design (C)
- Currently in Phase D
  - 8 observatories being assembled, integrated and tested at SwRI in San Antonio, TX
  - Mission Operations Center coming online at SwRI in Boulder, CO
  - Science Operations Center coming online at UM in Ann Arbor
- T-minus 276 days + 23 hours to launch
  - Launch window opens at 13:00 EDT on 17 Oct 2016
  - L-1011 aircraft takes off from Kennedy Space Center
  - Pegasus dropped over mid-Atlantic, launched into 510 km circular orbit at 35° inclination
  - Begin deployment of 8 Observatories at ~L+12 min
- Phase E (science operations) to begin at L+60 days





### **CYGNSS Observatory**



Power: 38.3 W; Mass: 24.8 kg





### Observatory #1 Assembly, Integration & Test









## Launch and Deployment Concept







## Pegasus Installed on L-1011 Aircraft





# Thank You

for more information visit <a href="http://cygnss-michigan.org">http://cygnss-michigan.org</a>

or contact Chris Ruf, cruf@umich.edu