Local Gauge Correction of Radar QPE in the Multi-Radar Multi-Sensor System

Jian Zhang¹, Youcun Qi^{1,2}, Carrie Langston^{1,2}, Brian Kaney^{1,2}

¹ National Severe Storms Lab, Norman, OK

² Cooperative Institute for Mesoscale Studies, University of Oklahoma, Norman, OK

Background: Radar QPE Pros and Cons

- Radar provide <u>high-resolution</u>
 <u>spatially continuous</u> measure of precipitation.
- However, radar observations are from a volume above the ground.
 - Evaporation -> <u>overestimation</u>
 - Warm rain growth, orographically enhanced precipitation -> <u>underestimation</u>
- Radar observations are an <u>indirect</u> measure of liquid/ice water content.
 - Calibration error
 - Attenuation (*C- and X-band radars*)
 - Clutter (single-polarization radars)

Background: Gauge Pros and Cons

- Gauge is an <u>in situ</u> and <u>direct</u> measure of precipitation.
- However, gauges are often too far apart to capture important precipitation processes.
- Maintaining a high quality gauge is expensive.
- Few operational gauges can accurately measure ice water equivalent (IWC) especially on the hourly scale.

Objective of the MRMS local gauge correction:

To reduce errors in the radar-only QPE and to obtain a higher accuracy product (but with a ~1hr latency).

Methodology

- The main steps of the MRMS local gauge correction of radar QPE:
 - 1. Quality control of hourly gauge data (*Martinaitis, Tues.* 11am)
 - Calculate hourly Radar(R) Gauge (G) precipitation differences at gauge sites
 - 3. Interpolate R-G differences onto the radar QPE grid
 - 4. Subtract the interpolated R-G error from the hourly radar QPE.

Methodology

Interpolation weighting function: inverse distance weight (IDW)

$$w = \begin{cases} \frac{1}{r^b} & ; \quad r \le R_0 \\ 0 & ; \quad r > R_0 \end{cases}$$

$$\frac{r}{b}$$
: exponent; values between 1 ~ 2.5.
$$R_0$$
: radius of influence; values between 50 ~ 250km

<u>r</u>: distance.

b and R_o are "optimized" hourly through a cross-validation that minimizes the interpolation error of R-G differences:

$$J = \sum_{n=1}^{N} \left(\varepsilon_{n} - \tilde{\varepsilon}_{n}\right)^{2}$$

$$\varepsilon_{n} = R_{n} - G_{n}$$

$$\tilde{\varepsilon}_{n} = \frac{\sum_{k=1,N}^{N} w_{k} \varepsilon_{k}}{\sum_{k=1,N}^{N} w_{k}}$$

$$\varepsilon_n = R_n - G_n$$

$$\widetilde{\varepsilon}_n = \frac{\displaystyle\sum_{\substack{k=1,N\\k\neq n}} w_k \varepsilon_k}{\displaystyle\sum_{\substack{k=1,N\\k\neq n}} w_k}$$

N: number of gauges

 R_n : hourly radar QPE at the n^{th} gauge

 G_n : hourly gauge QPE at the nth gauge

Methodology

- The LGC parameters are also adjusted for different areas to account for spatial variations of precipitation:
 - IDW parameters are optimized and LGC applied for each of eleven longitude zones (tiles)
 - LGC QPEs from individual tiles are merged to produce the CONUS product.

LGC example: 23Z 12/27/15

Performance: N. Plains 6/4/14

Performance: AZ 8/12/15

Performance: S. Plains 12/28/15

Performance: CONUS, 2014 – 15

Summary

- A real-time local gauge bias correction of radar QPE in the MRMS system was introduced
- The correction process has two unique aspects:
 - Automated hourly gauge QC
 - Spatially and temporally adjusted interpolation weighting function to minimize the interpolation error in different precipitation distributions
- Future work:
 - Ingest more gauge data (MADIS)
 - LGC and Mountain Mapper merged QPE (Martinaitis et al., poster 553)
 - Integration of satellite QPE (SCaMPR, GOES-R).

Thank You!

mrms.ou.edu jian.zhang@noaa.gov

Gauge QC

Performance: CONUS 2014-15

CONUS CoCoRAHS Gauge Statistics

Domain mean daily precipitation amount (in) # of non-zero gauges (CoCoRaHS)

