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Summary

Intensification of the hydrologic cycle is a key dimension of climate change, with
substantial impacts on human and natural systems. A basic measure of hydrologic cycle
Intensification is the increase in global-mean precipitation per unit surface warming,
which varies by a factor of three in current-generation climate models (about 1-3 %/K).
Part of the uncertainty may originate from atmosphere—radiation interactions. As the
climate warms, increases in shortwave absorption from atmospheric moistening will
suppress the precipitation increase. This occurs through a reduction of the latent heating
Increase required to maintain a balanced atmospheric energy budget. Using an
ensemble of climate models participating in CMIP5, we show that such models tend to
underestimate the sensitivity of solar absorption to variations in atmospheric water vapor,
leading to an underestimation in the shortwave absorption increase and an
overestimation in the precipitation increase. This sensitivity also varies considerably
among models due to differences in radiative transfer parameterizations, explaining a
substantial portion of model spread in the precipitation response. Consequently, attaining
accurate shortwave absorption responses through improvements to the radiative transfer
schemes could reduce the estimated ensemble-mean increase in global precipitation per
degree warming for the end of the twenty-first century by about 20%, and would reduce
the spread in this quantity as well.

1. Background

Model-mean atmospheric energy budget
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 Spread in global-mean precipitation change is linked to
model differences in the response of the atmospheric
energy budget components under climate change.

2. Understanding model spread in the

temperature-mediated L, ,P response (L ,dP/dT)
The Gregory method is applied to separate temperature-mediated responses and rapid adjustments under 4xCO,
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 Spread Is strongly related to model differences in the
clear-sky temperature-mediated SWA response.
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3. What causes model spread in the
temperature-mediated SWA response?
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Sensitivity of solar absorption to varying water vapor
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« Spread Is explained by differences in the sensitivity of

 Radiative-kernel-derived
responses do not
replicate the spread Iin
model-produced
responses.

 Thus, differences in the
water vapor response
per unit warming do not
explain the spread.

sensitivity: based on local and monthly covariations in
SWA and PW over tropical oceans (piControl/present day)
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SWA to a unit change in water vapor (dSWA/dPW).
« Models generally underestimate dSWA/dPW.
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4. Shortwave parameterization schemes

 Differences in dSWA/dPW
originate from different
parameterizations of solar
absorption by water vapor in
a cloud-free atmosphere.

e More modern/advanced
schemes that incorporate
more computations tend to
perform better.
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5. If the temperature-mediated SWA response

LvAP _ LvAPch8_5 — bias * ATRCP8.5
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bias: the bias in temperature-mediated L, P response
resulting from a bias in SWA response

The ensemble-mean value of
AP/AT predicted at the end of
the 215t century could be
reduced by 20% and model
spread in the warming
component of this quantity
would decrease.

For more, see: DeAngelis, A. M., X. Qu, M. D. Zelinka, and A. Hall, 2015. An observational radiative constraint on hydrologic cycle intensification. Nature, 528, 249-253, doi: 10.1038/nature15770.
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S1. Separating temperature-mediated responses and rapid adjustments

Gregory scatterplots: GFDL-CM3 example
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S2. Correcting late 215t century global precipitation change
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