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losses due to hail events, improvements to convective resolving storm-scale models, and the “maker” components (Figures 4 and 5). trapezoid approximation to give an area R * Classic supercell at time of :ffofdleaﬁﬁqrg;nc?y °f disdrometer deployments during fhe 2015 field campaign. Included 5 fhe fargest size bin wifh &
dual-polarimetric upgrade to the WSR-88D network has produced a renewed interest in under the signal curve (Figure 7), similar A TRl T e deployment. Location Date N o [piehes || LD A A T
understanding the characteristics of hail at the ground. The true damage potential of hail is Rechargeable sealed battery. to Joss and Waldvogel (1967). 45 §E ol N detected (bin, cm)

dependent upon the hail size distribution and duration of the event. Hail pads are effective in | | |  Array of 6 probes deployed. 7 NW Vernon, TX 6 May 2015 1A 2-3 cm
capturing size distributions but require significant manpower to maintain them and lack any Arduino Due achieved 5 kHz timed Probes were impacted by laboratory ice Ly T 77 10 SW Woodson, TX 7 May 2015 2A 1-2 cm
temporal resolution. There remains a need to capture the time history of hail size sampling, with microSD, and GPS spheres (Figure 8). il A s 9 NW Childress, TX 8 May 2015 3B 3-4 cm
distributions. modules. e e ) ey Spur, TX 8 May 2015 3C 4-5 cm
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measurements were made further south of
the disdrometer array.
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Figure 1: Conceptual view of a deployment of an adaptive network of hail g W 7‘“:"' . g L. — . % i W AU 3 (bottom) hailstone diameter and disdrometer estimated maximum and mean
Adapting the design of Impact disdrometers, following the in-situ, adaptive observing network ~ g5 ST oD 2 , i, B Py T =T — N A 7 5 A T oh diameter for probe locations where hail was detected. Deployment locations
concept of Weiss and Schroeder (2008). fFER \& \ o L& & =0 Figure 12. KLBB 0.5° reflectivity at (top) 2038, (middle) are labeled by IOP and probe number.
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Additional measurement locations are also provided.

Designed for hail only

Figure 5: Data acquisition system and components.
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