An Investigation of Reforecasting Applications for NGGPS Aviation Weather Prediction: An Initial Study of Ceiling and Visibility Prediction

Kathryn L. Verlinden, Oregon State University
David Bright, WFO Portland, Oregon
NWS initiative to expand and accelerate critical weather forecasting R2O

- Funded by Congress as part of the 2012 Sandy Supplemental

"Over the next five years, design, develop, and implement the Next Generation Global Prediction System and maintain world-class forecast capability for the protection of life and property and economic growth and prosperity."

- AWT project funded under NGGPS to “Investigate Reforecasting Applications in Aviation Weather Prediction”
- Utilize NOAA’s 2nd Generation Global Ensemble Forecasting System (GEFS) to explore ceiling and visibility (C&V) prediction at Core-30 airports
- Numerous studies have demonstrated value of reforecasting for ensemble post-processing and decision support, but none specific to aviation

http://www.nws.noaa.gov/ost/nggps/index.html
DATA

Reforecast
http://www.esrl.noaa.gov/psd/forecasts/reforecast2/

- Same model version, uncertainty parameterization, similar ensemble initialization as NCEP GEFS v9.0.1
- Reforecasts generated once daily at 0000 UTC
- December 1984 – May 2015
- Forecasts every 3 hours out to 30 hours
- 1° x 1° latitude-longitude global grid
 - Focus on Core-30 U.S. airports

Observations
www.ncdc.noaa.gov

- METAR as truth for C&V
METHODS

1. Acquire, ingest, and post-process reforecast data
 a. Ensemble mean
 b. Strip to airport locations
 c. Create temperature and moisture profiles

2. Acquire and filter METARs
 a. Filter to forecast hours
 b. Interpolate between observations as necessary
 i.e. unreported or not on the hour
METHODS

3. Create downscaled probabilistic forecasts
 a. Analog reforecasts
 ▶ Match every fifth day
 ▶ Based on T and T\textsubscript{d} “soundings”
 ▶ Closest 50 analogs determined via RMS error
 b. Downscale to airport via METAR observations
 ▶ Flight regulation categories
 c. Brier Skill Score versus climatology

<table>
<thead>
<tr>
<th>Flight Conditions</th>
<th>Ceiling (ft)</th>
<th>Visibility (SM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFR</td>
<td><1000</td>
<td><3</td>
</tr>
<tr>
<td>MVFR</td>
<td>≥1000 & ≤3000</td>
<td>≥3 & ≤5</td>
</tr>
<tr>
<td>VFR</td>
<td>>3000</td>
<td>>5</td>
</tr>
</tbody>
</table>
RESULTS: IFR
RESULTS: IFR

- Skill over climatology through 30 hours
- Slight decrease in skill with increasing lead time
RESULTS: IFR
RESULTS: VFR
RESULTS: VFR

- Skill decreases with increasing lead time
- Most skill during Afternoon and evening local time
RESULTS: VFR

Atlanta

Chicago

New York
SUMMARY

- Analog post-processing NOAA’s 2nd-Generation GEFS Reforecast dataset shows promise for aviation applications
 - Skill in forecasting IFR and VFR to 30 hour lead time
 - Seasonal and observed frequency relationships
- Limitations due to data resolution
 - Horizontal stripping to airport locations from dissimilar surrounding grid corners
 - Vertical limitations in resolving MVFR
- Given the skillful results from this low-resolution analog approach, we believe a mesoscale reforecast dataset would further improve results and applications
FUTURE WORK

- Explore applications to higher resolution reforecast datasets
- Test ensemble members vs. ensemble mean
- Expand to additional aviation variables
 - e.g., icing, turbulence, mountain waves, low level wind shear
- Work toward operational applications that communicate most likely and probabilistic values