Structure-Reactivity Analyses for Epoxide,
Organosulfate, and Organonitrate
Reactions Relevant to Secondary Organic

Aerosol Composition
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SOA as Chemical Reactor

Nucleophiles

Epoxides
Catalysts

aerosol
phase

gas
phase

HO

OH

?

+ RCOOH —>

+RNH, = ’



Nucleophilic Addition Mechanisms
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Acid Catalysis: Bronsted vs. General

transition state
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2-methyl-1,2-epoxypropane <~/

2,3-MBO epoxide

IEPOX-4

IEPOX-1
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Bronsted-Acid Catalyzed

epoxide
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8.7
(Minerath et al. ES&T,
2008)

0.41
(Mael et al. IPC A,
2015)

0.036

(Darer et al. ES&T,
2012)

0.0079

(Darer et al. ES&T,
2012)

0.0000591
(Birdsall et al. ACP,
2014)



Structure-Reactivity Conclusions

Tertiary nucleophilic addition most common, but primary
nucleophilic addition is observed for MAE - indicates A-2
mechanism dominance

Neighboring OH groups reduce the rate constant — these
electron withdrawing groups destabilize the A-2 transition
state species (make the epoxide C more electropositive)
and raise the effective activation energy

COOH groups are extremely good electron withdrawing
groups, and raise the effective activation energy even
higher



General Acid Catalyzed Reactions
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Which Nucleophiles Dominate?

Nucleophilicity (the donation of electrons to form a new bond)

1)
2)

3)
4)

Is affected by four factors:
Charge — the more negative, the better

Electronegativity/Lone Pairs — the less electronegative
the atoms and the more lone pairs, the better

Solvent — polar solvents (water) can complicate analysis
Steric hindrance — the less bulky, the better

Nucleophilicity scale definition:

nucleophile nucleophilic strength

water nucleophilic strength
. (Ynuc product/Xnucleophile)

(Yhydrolysis product/XHZO)



Relative Nucleophilicities:

Inorganic lons
1,2-epoxyisoprene reaction (Minerath et al. ES&T, 2009):

nucleophile relative nucleophilicity
H,O 1 (by definition)
NO; 7.0
HSO, 8.8
Cl- 31
Br- 60
| 140

Charge and Solvent effect: stronger H-bonding with
solvent H,O of strong acid conjugate bases and smaller
halides hinders nucleophilicity, but all negative ions
stronger than H,O



Relative Nucleophilicities:

Alcohols and Acids
MAE reaction (Birdsall et al. ACP, 2014):

nucleophile relative nucleophilicity
CH;COOH 0.4
(0]
MAE O OH
0.6
(0]
WO o 0.8 total =
2-MG 0.4 (carboxylic acid) +
0.4 (primary alcohol)
H,O 1 (by definition)
CH,0H 3.1
HSO, 11

All OH groups have similar nucleophilicity, weaker than HSO -



Relative Nucleophilicities: Amines
1,2-epoxybutane reaction (Stropoli et al. JPC A, 2015):

nucleophile relative nucleophilicity
H,O 1 (by definition)
HSO, 20
t-butyl amine 3000

Electronegativity/Lone Pair Effect: Nitrogen has lower
electronegativity than oxygen, but has a lone pair, unlike
carbon, which combines to make amines very strong
nucleophiles — organic amines especially strong
because alkyl groups are electron donating

Protonated amines are very weak nucleophiles — most
atmospheric amines are protonated at SOA pH’s
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Oligomerization i1s a Nucleophilic
Addition Reaction

Oligomerization of IEPOX is an alcohol nucleophilic addition
reaction: o

OH
H* HO
HO K HO " OH o)
a OH 2 OH o
. . AN
OH
OH

Oligomerization of MAE is an acid nucleophilic addition

o

reaction: <q;ﬂ\
/ H* OH

O



Isomerization Is a Unimolecular
Nucleophilic Addition Reaction

THF-like isomerization products observed from IEPOX (Lin et
al. ES&T, 2012):

T— HO /“‘“H ® @)
® N S L —— T HO)Q

+ H
OH OH

Because ring closing reactions are relatively slow,
Isomerization will dominate only when stronger
nucleophiles are in low concentration (i.e., low SOA liquid
water content)



Metastability of Organonitrates and
Halides: Nucleophilic Substitution

Organic halides have generally not been detected in
ambient SOA and organonitrates have been shown to
susceptible to hydrolysis (Boone et al. ES&T, 2015).

Relative nucleophilic substitution efficiency is predicted
by leaving group properties (potential leaving groups in
SOA: halides and NO;) and structure at reactive site
(tertiary structure best stabilizes intermediate).

Leaving group property is proportional to weak base
property because the weak bases are able to take on
extra electron density as they “leave™ Cl-and NO; are
excellent leaving groups.



Structure-Reactivity Tools for
Predicting SOA Reactions

All Major Classes of Epoxide Reactions (Hydrolysis,
Organosulfate Formation, Oligomerization, and
Isomerization) Can Be Interpreted as Nucleophilic
Addition Reactions.

Relative Rates of Nucleophilic Addition to Epoxides Depend
on Catalysts, Epoxide Carbon Substitution Structure,
Relative Nucleophilicity, and Nucleophile
Concentrations.

Water Nucleophilic Substitution for Rates Depend on
Leaving Groups, Carbon Substitution Structure, Liquid
Water Content.
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