

"Rainfall kinetic energy and intensity relationships in Mexico City"

INTRODUCTION

The kinetic energy of rainfall is widely used as erosivity indicator for estimating soil detachment (erosion) induced by the impact of raindrops.

This study considered two rainfall erosivity indices:

- **Kinetic Energy Content** $(KE_{mm}, J m^{-2} mm^{-1})$
- **Kinetic Energy Expenditure** $(KE_{time}, J m^{-2} h^{-1})$

The relationships between these rainfall erosivity indices (KE_{time} and KE_{mm}) and rainfall intensity were established by fitting to an functional model based on measurements of the number of drops by size and terminal velocity using laser optical disdrometer OTT Parsivel² located in the Hydrological Observatory in Mexico, City.

Splash erosion

Alejandra Amaro-Loza, Saúl Arciniega-Esparza, Adrián Pedrozo-Acuña, Agustín Breña-Naranjo

National Autonomous University of Mexico, Institute of Engineering, Mexico City, Mexico. Aamarol@iingen.unam.mx

On the kinetic expenditure (KE_{time}) and rainfall intensity relationship

The KE_{time}-I plots indicates values between (0-2000 J m⁻² h⁻¹) for rainfall intensity range of 0-40 mm/h. The worst fit was obtained with logarithmic equation.

CONCLUSIONS

- Rainfall kinetic energy represents the total energy available for detachment and transport by rainsplash. Therefore, the knowledge of the relationship KE-I is important for the prediction of erosion.
- It was found that in all cases the disdrometer OTT Parsivel² registered greater depth of rainfall than the rain gauge OTT Pluvio², which was previously established by Tokay (2013)
- The best fit for the relationship between the two kinetic energy indices and rainfall intensity, with a similar distribution is power law and exponential.