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Background. The authors have recently completed a piece of work exploring trends in the skill

of weather prediction at lead times of 1 to 14 days for Melbourne, Australia.
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Official Australian Bureau of Meteorology forecasts were used to establish these trends at

shorter lead times - out to Day-7. The system that was used to establish these trends at longer

lead times - out to Day-14 - was, in part, based upon an algorithm that statistically interpreted

the GFS NWP model output to generate local weather forecasts.

More recently, the application of other NWP models towards determining predictability

limits has also been explored. To this end, the authors presented preliminary results to the 2015

American Meteorological Society Annual Meeting about what had been achieved using a

statistical interpretation of the output (over a six-month period) of the ECMWF monthly control

model (which generates predictions out to Day-32).
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Since then, further sets of GFS and ECMWF model output data have been collected and it is

the purpose of this paper to update the aforementioned results utilising the larger data sets and

to reflect on their implication for seasonal climate outlooks.

Results. To this end, Figure 1 depicts the correlation coefficients between forecast and observed

inter-diurnal sets of changes in minimum temperature for lead times from Day-1 (the column

for Day-1 represents the correlation coefficient between the two sets of changes from Day-2 to

Day-1) to Day-31 (the column for Day-31 represents the correlation coefficient between the two

sets of changes from Day-32 to Day-31). Figures 2, 3 and 4 respectively depict correlation

coefficients between forecast and observed inter-diurnal changes in maximum temperature,

precipitation amount and precipitation probability. Positive values of the correlation coefficient

suggest that the associated predictions possess skill at forecasting day-to-day changes.

Figures 1, 2, 3 and 4 show that some skill is evident at predicting day-to-day fluctuations in

each of the four weather elements out to at least Day-10. However, little skill is evident in

regard to predictions of any of the weather elements beyond Day-14. Figure 5, which depicts a

set of averages of the correlation coefficients shown in Figures 1, 2, 3 and 4, and represents,

therefore, an attempt to illustrate ‘overall’ skill, underlines the aforementioned conclusion.
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Figure 1 Correlation coefficients between

forecast and observed inter-diurnal sets of

changes in minimum temperature.

Figure 2 Correlation coefficients between

forecast and observed inter-diurnal sets of

changes in maximum temperature.

Figure 3 Correlation coefficients between

forecast and observed inter-diurnal sets of

changes in precipitation amount.

Figure 4 Correlation coefficients between

forecast and observed inter-diurnal sets of

changes in precipitation probability.

Implications for day-to-day forecasting.

The average of the seventeen (Day-15 to Day-

31) correlation coefficients associated with:

• minimum temperature is +0.0005,

• maximum temperature is -0.0111,

• rainfall amount is -0.0068,

• rainfall probability is -0.0123,

• ‘overall’ is -0.0074.

The five averages being very close to zero

strongly suggest the absence of any skill in

day-to-day weather forecasting beyond Day-

14.

Implications for seasonal forecasting.

Whilst we have documented the absence of

skill in Melbourne’s day-to-day weather

forecasts beyond Day-14, this does not

necessarily have any implications for seasonal

forecasting on account of the latter’s goal of

providing an overall picture of the next few

months’ weather. Indeed, verification statistics

demonstrate that some capability exists in

regard to predicting the characteristics of the

forthcoming season, particularly in regard to

rainfall.

Figure 6 shows that the rainfall seasonal

outlooks issued by the Australian Bureau of

Meteorology display some skill throughout

the year, performing best during the spring

half. The spring rainfall outlooks are

especially good in the case of Queensland,

New South Wales, Victoria and the Northern

Territory, whose rainfall at that time of the

year is sensitive to Pacific Ocean sea surface

temperature anomalies and the El Niño

phenomenon.

Figure 7 shows that the minimum

temperature seasonal outlooks, whilst

somewhat less skilful than the rainfall

outlooks, perform well during the winter half

of the year. The winter minimum temperature

outlooks for the Northern Territory and

Queensland are better than those for the other

states.

Figure 8 shows that the maximum

temperature seasonal outlooks display some

skill in all seasons except autumn, and are

best for Queensland, Northern Territory and

Western Australia.

Finally, Figure 9 depicts an unsteady, but

nevertheless positive, trend in the skill

displayed by the rainfall outlooks, since they

were first issued in the late 1980s.

Figure 5 Averages of the sets of correlation

coefficients between forecast and observed

inter-diurnal changes in minimum

temperature, maximum temperature, rainfall

amount and rainfall probability and,

therefore, an illustration of ‘overall’ skill.

Figure 9 Five-year running mean anomaly

correlation coefficient, averaged across all

Australian states, between forecast and

observed seasonal rainfall.

Figure 6 Five season running anomaly

correlation coefficient, averaged across all

Australian states, between forecast and

observed seasonal rainfall (2000-2015).

Figure 7 Five season running anomaly

correlation coefficient, averaged across all

Australian states, between forecast and

observed seasonal minimum temperature

(2000-2015).

Figure 8 Five season running anomaly

correlation coefficient, averaged across all

Australian states, between forecast and

observed seasonal maximum temperature

(2000-2015).

Summary. Some skill is evident at predicting day-to-day fluctuations in each of the four weather elements out to at least Day-10. However, little skill is evident in regard to

predictions of any of the weather elements beyond Day-14. This absence of day-to-day skill beyond Day-14 does not have any implications for seasonal forecasting on account of the

latter’s goal of providing an overall picture of the next few months’ weather. Indeed, verification statistics demonstrate that some capability exists in regard to predicting the

characteristics of the forthcoming season.

mailto:hstern@unimelb.edu.au
mailto:n.davidson@student.monash.edu

