

AMS 96th Annual Meeting, 10-14 January 2016, New Orleans

Thirty-plus (30+) Years of Snowstorm Climatology Obtained from MERRA Reanalysis

Abstract

Thirty-seven (37) years of blizzard-like snowstorms are identified and individually tracked using NASA's Modern Era Retrospective-analysis for Research and Applications (MERRA) reanalysis hourly data with a spatial resolution of half (1/2) degree in latitude by two-thirds (2/3) of a degree in longitude. We have gathered not only summary statistics for all storms, such as frequency distributions of storm duration and cumulative area coverage, but also perevent statistics for each storm, e.g. beginning/ending times, hourly locations, and hourly mean snowfall intensities. This work is greatly benefited by technology projects funded by NASA Advanced Information Systems Technology (AIST) program and facilitated by a Big-Data technology, SciDB. We have constructed a Google Maps application (App) marking the hourly locations of each snowstorm and annotating them with hourly statistics. Moreover, whenever coincident data granules of relevant satellite remotesensing observations are found within the NASA metadata repository, i.e. EOS Clearing House (ECHO), the FTP URLs of these data granules are also included as annotations to corresponding hourly locations. Since the App runs on the server side and utilizes browser-based visualization, it can be executed on smart phones. With such an App, researchers studying snowstorms will be able to conveniently find the storms matching their research interest and criteria. In addition, they can easily and quickly obtain coincident data granules from NASA's vast satellite remote sensing data holdings. There are other more far-reaching implications with this type of effort, which

we will elucidate in our presentation.

Our Innovation

Event-based versus Presence-based approach

- Presence-bases approach can tell whether a grid cell satisfies the criteria for a given phenomenon (e.g. blizzard).
- It cannot tell whether two cells satisfying the criteria, but separated by space and time, belong to the same episode of the phenomenon!
- Event-based approach applies connectivity criteria to cells satisfying the criteria and track their development to recognize and form distinct episodes.

MERRA Datasets Used

Resolutions:

- Spatial resolution
- $-\frac{1}{2}^{\circ} \times \frac{2}{3}^{\circ}$ in latitude × longitude (540 × 361 spatial grid)
- Temporal resolution
- 1 hour, except for **MACONXCNS**, which is time-independent
- $\gtrsim 300,000$ hours for ~37 years (January 1979 November 2015)

Short Name	Name	Brief Description
MACONXCNS	const_2d_asm_Nx	2D constants
MAT1NXFLX	tavg1_2d_flx_Nx	2D surface turbulent flux diagr
MAT1NXLND	tavg1_2d_Ind_Nx	2D land surface diagnostics
MAT1NXSLV	tavg1_2d_slv_Nx	2D atmospheric single-level dia

Variables Uses

vanables used						
Dataset	Variable	Description	Study			
MACONXCNS	AREA	Area of grid box	This	DY		
	FRLAND	fraction of land type in grid box	This	DY		
MAT1NXFLX	FRSEAICE	Fraction of sea-ice	This	DY		
	PRECSNO	Surface snowfall flux	This	DY		
	PRECTOT	Total surface precipitation flux	This	DY		
MAT1NXLND	SNODP	Snow depth	This	DY		
MAT1NXSLV	U10M	Eastward wind at 10 m above displacement height	This	DY		
	V10M	Northward wind at 10 m above displacement height	This	DY		
	T2M	Temperature at 2 m above displacement heigh		DY		
	TS	Surface skin temperature		DY		

Kwo-Sen Kuo^{1,2}, Amidu Oloso³, Michael Bosilovich¹, Allison Collow^{1,4},

Michael L Rilee^{1,5}, and Thomas Clune¹ ¹NASA Goddard Space Flight Center, Greenbelt, Maryland, USA ²Bayesics, LLC, Bowie, Maryland, USA ³Science Systems and Applications, Inc., Lanham, Maryland, USA ⁴University Space Research Association, Greenbelt, Maryland, USA ⁵Rilee Systems Technologies LLC, Herndon, Virginia, USA

Derived Variables				
Description	Variable	Definition		
10-m wind speed	S10M	(U10M ² +V10M ²) ^{1/2}		
Snowfall rate in mm·hr ⁻¹	SRATE	PRECSNO×3.93×10 ³		
Extinction cross section due to falling snow	FSBETA	3.912×SRATE/10 ³		
Extinction cross section due to blowing snow	BSBETA	10 ⁻⁴ ×1.4428 ^{S10M}		
Visibility	VIS	3.912/(FSBETA_BSBETA)		

NWS Blizzard Criteria

According to NWS, a blizzard means that the following conditions are expected to prevail for a period of 3 hours or longer:

- Sustained wind or frequent gusts to 15.6 m/s (35 mph) or greater; and
- Considerable falling and/or blowing snow, i.e., reducing visibility **frequently** to less than 400 m ($\frac{1}{4}$ mile)

Numerical Blizzard Criteria Used					
Phenomenon	Criterion				
Blowing snow possible	 (FRLAND > 0.5 or FRSE SNODP > 0.03 				
Falling snow condition	• PRECSNO = PRECTOT a				
Blizzard	 VIS < 945.36 Lasting 3 hours or long 				

Snapshot of "Snowmageddon"

The image is generated for a time slice during the "Snowmageddon" event on the East coast of the United States in February 2010.

Acknowledgement

We are grateful for funding provided by NASA Advanced Information Systems Technology (AIST) and NSF EarthCube programs.

nostics

iagnostics

on MERRA

EAICE > 0.5) and

and PRECSNO > 0

Percentile

Event-based Data Discovery

detailed analysis.

Conclusion

- No data needs to be downloaded
- Filtering by criteria is efficient (pleasingly parallel).
- the obtainment of event-based statistics.
 - classification.

Some Event-based Climatological Statistics

Event time and location enable us to find other relevant datasets for more

• The Big Data technology employed, i.e. SciDB, demonstrates a far more efficient data analysis operation than the currently prevalent practice.

- Much faster turnaround time for comprehensive studies.

• Connected component labeling (CCL) tracks episodes of blizzards, enabling

- Obtaining number of occurrences per year become possible.

- Per event (episode) statistics have the potential to serve as bases for refined

– Per event (episode) statistics may detect climatological changes in related processes.