New MRMS Cloud-to-Ground Probability in next 30 min

- **Features:**
 - Reflectivity_-20C(dBZ)
 - LLReflectivity(dBZ)
 - MESH(mm)
 - MaxVIL(kg/m^2)
 - TotalVIL
 - Reflectivity_0C(dBZ)
 - MidLvlShear
 - MAXRef
 - Size(km2)
 - LapseRate_700to500mb(DegreeCPerKilometer)
 - TotalCGCount
 - SPEED
 - LifetimeMESH
 - SRHelicity0
 - SfcThetaE
 - SfcCIN(SquareMetersPerSquareSecond)
 - LapseRate_700to500mb
 - ENI_ICcount_15min(flashes)
 - IC_FlashesPerCellArea
 - CGCount_15min(flashes)
 - CGCount_2min(flashes)
 - VILAreaGT40(km^2)
 - MeanRef
 - MaxVIL
 - BRNShear(SquareMetersPerSquareSecond)
 - MESH
 - MeanRef
 - Reflectivity_0C
 - Reflectivity_-10C
 - Reflectivity_-20C
 - Reflectivity_0C(dBZ)

- **Importance:**
 - Reflectivity_-20C(dBZ)
 - LLReflectivity(dBZ)
 - MESH(mm)
 - MaxVIL(kg/m^2)
 - TotalVIL
 - Reflectivity_0C(dBZ)
 - MidLvlShear
 - MAXRef
 - Size(km2)
 - LapseRate_700to500mb

- **Performance:**
 - 0.070433
 - 0.077284
 - 0.13844

DISCUSSION/FUTURE WORK

- **New MRMS Cloud-to-Ground Probability in next 30 min:**
 - The current/NWS operational solution to CG Probability in the next 30 minutes is:
 - Uses all inputs for random forest and logistic regression calculations
 - Overall best Brier Score for both random forest and logistic regression solutions
 - Both solutions fit well with the perfect reliability line
 - Random forest has a slight under-forecasting above 25%
 - Logistic regression has slight over-forecasting in middle probabilities and under-forecasting towards the extremes
 - Table shows the most important inputs/features to the random forest solution
 - Most important features were all MRMS data-majority being Reflectivity products

- **New MRMS Cloud-to-Ground Probability in next 30 min:**
 - Uses only MRMS, NSE, and storm attribute inputs for random forest and logistic regression calculations
 - No MRMS or NSE inputs
 - Worst Brier Score for random forest
 - Both solutions fit well with the perfect reliability line
 - Table shows the most important inputs/features to the random forest solution
 - Most important features were all total lightning data-majority being Reflectivity products

- **New MRMS Cloud-to-Ground Probability in next 30 min:**
 - Uses only total lightning and storm attribute inputs for random forest and logistic regression calculations
 - No MRMS or NSE inputs
 - Worst Brier Score for logistic regression
 - Random forest time averaged around a lot
 - Due to small sample size
 - Logistic regression way over-forecasted for events lower than 25% and under-forecasted for events above 35%
 - Table shows the most important inputs/features to the random forest solution
 - Most important features were all total lightning products

- **Current/Operational:**
 - Has realistic probabilities with a good Brier Score
 - Uses new total lightning data as well as more MRMS and NSE data as inputs
 - Has realistic probabilities with a good Brier Score
 - In the future, need to:
 - Incorporate random forest decision trees into WDSSII CG probability algorithm-including pairing down the inputs
 - Test the new CG probability product in the 2016 Hazardous Weather Testbed (PHI Experiment)
 - Implement new CG probability product into operational MRMS (Version 127)

Acknowledgments: John Carbone, Ken Copsey, Chris Karstens, Darrel Kingfield, Amy McGovern, and Travis Smith.