Identification of Methane Emission Sources in the Baltimore-Washington Metropolitan Area

Jonathan R. Hansford1, Doyeon Ahn1, Ross J. Salawitch1, Xinxong Ren2, Mark D. Cohen2, Barbara Stunder2, Russell R. Dickerson1

1University of Maryland, College Park, MD; 2NOAA Air Resource Laboratory, College Park, MD

Introduction

• The Fluxes of Atmospheric Greenhouse Gases in Maryland (FLAGG-MD) project aims to estimate sources and sinks of carbon dioxide, methane, and carbon monoxide in the Baltimore-Washington metropolitan area.
• Flights were conducted on nine days in February 2015 to measure trace gas and aerosol concentrations in the region.
• Back trajectories originating from the flight track were computed using HYSPLIT model to analyze the measurements.

Data

• HYSPLIT Meteorological Data: NAM 4km - Hourly data, 40 Vertical levels
• Aircraft: Cessna 402B - Measurements every second
• Positional: Cessna Garmin GPS
• [CO], [CO2], [CH4], [H2O]: Picarro G2401-f
• Wind: Estimated using aircraft airspeed/heading and GPS
• Natural Gas pipeline information - Acquired from NPMS Public Map Viewer

Blue Plains Water Treatment

Largest plant of its kind in the world, serving two million customers.

Flight Tracks

FLAGG-MD February 2015 Flights

Blue Plains Water Treatment

Not known if it is leaking methane from its infrastructure.

Brown Station Landfill

Largest landfill in the region; has a gas collection system to extract methane and burns it to generate electricity.

Mass Balance Estimate:

\[
E. R_{\text{CH}_4} = \int \frac{[C] - [C]_B}{U} \, dx \, dz
\]

Flight Day	CH4 Emission Rate (mol/s)
6 | 57.4
13 | 68.1
19 | 105.9
20 | 83.8
23 | 65.3
25 | 56.2
Mean | 72.8 ± 19.0 (~11% of region total)

Mass balance estimates were based on the modeled emissions and the fluxes computed in the middle of the boundary layer.

Brown Station Landfill

A major point source associated with clear methane enhancements on five out of the six downwind flights.

Washington D.C.

Not a clear methane source. Only associated with elevated methane on this date, and during this flight segment the modeled winds were roughly 30 degrees clockwise compared to the aircraft measurements, perhaps placing the modeled trajectory too far west.

Methane concentration downwind of the city was higher than the upwind concentration 3½ out of six flights with a clear upwind and downwind pass.

Reference

Conclusion

• Back trajectories originating at the plane's position, indicated by the dot, were plotted every fifteen seconds along the flight track.
• The color of the dot and trajectory indicates the concentration of methane measured by the aircraft at the initial point of the trajectory.
• The plane was within the boundary layer for all flight segments shown.
• The major natural gas distribution lines are indicated on the maps as red and blue lines; blue lines indicate gas phase transport, while red lines indicate liquid phase transport.

• Major methane sources in the Baltimore-Washington region are the two cities themselves and the point source Brown Station Landfill.
• Baltimore, like Washington, may be leaking methane from its gas distribution infrastructure.
• Major natural gas pipelines in the Baltimore-Washington region were not associated with methane enhancements and do not appear to be leaking significant amounts of methane.