A Comparison of Cloud and Aerosol Measurements from OCO-2 and CALIPSO

Emily Rosenthal¹, Rob Nelson², Heather Cronk², and Chris O’Dell²

Millersville University of Pennsylvania¹, Millersville, Pennsylvania
Colorado State University², Fort Collins, Colorado

Correspondence: ejrosent@millersville.edu

Introduction: What are CALIPSO and OCO-2?
• CALIPSO and OCO-2 are two satellites in the NASA Afternoon-Train
• CALIPSO measures the vertical distribution of clouds and aerosols while OCO-2 measures carbon dioxide
• OCO-2 has three spectrometers which measure different wavelengths of sunlight
• One of the spectra, the oxygen-A band (O₂-A Band), is used as a “cloud screener” to try and remove clouds and aerosols, which can contaminate OCO-2 measurements
• O₂-A Band cloud-detection output can be compared to CALIPSO data in order to examine its fidelity.

The General Idea
• If reflected sunlight hits clouds and aerosols instead of the surface, the photon path length is shortened.
• This path shortening is imprinted on the O₂-A band spectrum and indicates there is likely a cloud or aerosol layer present.
• We used CALIPSO measurements to validate the OCO-2 cloud screener and investigate where there is agreement and disagreement.

Methodology & Results
• We used ~650,000 co-located OCO-2/CALIPSO measurements from May 2015 in our analysis
• We compared the OCO-2 cloud screener to CALIPSO optical depths

Co-located Measurements

CALIPSO Optical Depth

Previous Simulated Results

Figure 1: ~650,000 co-located OCO-2 and CALIPSO measurements within 5 km.

Figure 2: Where the cloud flag equals zero, OCO-2 has identified the scene as clear
Where the cloud flag equals one, OCO-2 has identified the scene as cloudy.

Figure 3: High CALIPSO optical depths indicate clouds or aerosols.
At high optical depths the percentage of scenes OCO-2 identifies as clear is low (~20%).
At low optical depths the percentage of scenes OCO-2 identifies as clear is high (~70%).
This shows agreement between OCO-2 and CALIPSO.

Figure 4: Simulations from O’Dell et al. 2012 are shown.
This is the first time that this simulation-based result has been confirmed with real data.

Conclusions
• Generally, OCO-2 identifies high CALIPSO optical depth scenes as cloudy and low optical depth scenes as clear.
• For cloudy CALIPSO scenes, OCO-2 correctly identifies the vast majority of high clouds.
• For cloudy CALIPSO scenes, OCO-2 misidentifies ~40% of low clouds. This confirms earlier simulation-based results for the first time with real data.
• But… other work has shown that OCO-2 can filter out most low clouds using additional cloud information from its CO₂ bands.

Future Work
• Does the performance of the OCO-2 cloud screener have a solar zenith angle dependence?
• Does OCO-2 have more difficulty with ice vs. water clouds?
• What is the optical thickness limit for high clouds that OCO-2 can detect? Theoretical studies indicate it can sense clouds with extremely low OD (< 0.05).

Acknowledgments
Thank you to Chris O’Dell, Robert Nelson and Heather Cronk for helping with this project. This work has been supported by the National Science Foundation Research Experiences for Undergraduates Site in Climate Science at Colorado State University under the cooperative agreement No. AGS-1461270.

References

1. Where do OCO-2 and CALIPSO agree and disagree on where there is a cloud or aerosol layer?
2. Does OCO-2 have problems detecting certain types of clouds?