Toward Reduced Transport Errors in a High Resolution CO, Inversion System
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Introduction

Atmospheric transport is one of the key components in estimating posterior surface fluxes using an atmospheric inversion system. We present here a real-time
assimilation system applied to the Weather Research and Forecasting model (WRF) at high resolution to improve the representation of the atmospheric
dynamics in the inversion system. In addition to utilzing an optimal model configuration in model physics, we continuously assimilate surface and low

into the transport modeling system. For the Indianapolis Flux Experiment (INFLUX) project, we have developed a
Four Dimensional Data Assimilation (FDDA) technique coupled to the WRF model and the high resolution CO, emission product Hestia to provide the most
accurate transport solutions of the 3D fields of CO,. Unlike i data (e.g., 3-D VAR, EnKF, etc) that introduce insertion noise
detrimental to tracer transport FDDA and imil ions at each model time step to produce dynamic analyses
at a desired spatial resolution. It has been proven to be an effective method to constrain model error and is widely used in WRF modeling system (Deng et al.
2009, Rogers et al. 2013).

We evaluated the effect of assimilating various observations on the WRF solutions, and its impact on the linearized adjoint solutions used in the CO, inversion
system for INFLUX. Since WMO upper-air observations are sparse in time (i.e., 12 hourly apart) and space (hundreds of kilometers apart), additional
observations from different platforms were introduced, including the HALO lidar wind ions and aircraft from the airline
program, Aircraft Communications Addressing and Reporting System (ACARS). We present the inverse CO, emissions over 2 months (September-October 2013)
using different atmospheric simulations that assimilate surface stations, lidar, and ACARS, and assess the improvement in model performance based on the

ion used in our ilation system.

Model Description

WRF Model Physics: 1) Single-Moment 5-class ice scheme microphysical processes (WSMS),

2) Kain-Fritsch scheme for cumulus parameterization on the 9-km grid,

3) RRTM for longwave atmospheric radiation, and the Dudhia scheme for shortwave atmospheric radiation,
4) Level 2.5 TKE-predicting MYNN turbulent closure scheme (MYNN PBL),

5) 4-layer unified Noah land surface processes.

6) WRF-Chem (Grell et al. 2005) V3.5.1 release is used here

Meteorological Data Assimilation: WRF FDDA with both analysis nudging and observation nudging (Deng et al. 2009, Rogers et al. 2013) are used. Using FDDA

ions were assi into the WRF-Chem system to produce a dynamic analysis, blending the model simulations and the
observations to produce the most accurate meteorological conditions possible to simulate the atmospheric CO, concentrations in space and time over the
Indianapolis region.

Data Types Assimilated: 1) Standard WMO surface and upper-air observations, available hourly for surface and 12-hourly for upper air.

2) Wind profiles from the local HALO lidar deployed by NOAA Earth System Research Laboratory Chemical Sciences Division
(http://; 1 influx/) at a location in Indi s, available at 20-min. intervals.

3) The Aircraft Communications Addressing and Reporting System (ACARS) commercial aircraft observations, available anywhere in
space and time with low-level observations near the major airports.

Modeling System Configuration

WRE Model Grids: 9km: 101101, 3km: 100x100; 1km: 88x88; Fifty
nine (59) vertical terrain-following layers, with the first model layer
at about 7 m AGL and with 24 model layers below 1.5 km AGL,

" Ptop=100 hPa, one-way nesting. Model grids with WMO station
distribution, and the landuse for the 1-km grid are shown in Figs. 1
and 2.

1 km Landuse

-hourly NARR analyses at 32x32-km resolution
are used for the conditions and lateral boundary conditions
(ICs/LBCs). The IC fields are further enhanced by rawinsonde and
surface data through the WRF objective analysis process, Obsgrid,
using a modified Cressman analysis method (Deng et al. 2009). The
three-dimensional (3D) analyses and the surface analysis fields used
for analysis FDDA are also enhanced by the objective analysis process
and are defined at three-hour intervals. For the chemistry
initialization with CO,, Hestia 2012 product (Gurney et al. 2012) was
used to determine the emission values .

EDDA Configuration: Muliscale FODA with 3D analysis nudging and surface analysis nudiging on the 9-km grid , and observation nudging of WM obs on the 3~
and 1-km grids. No mass field and moisture) are assimilated in PBL so that model physics are dominant.

Figure 1. WRF 9/3/1-km grid configuration.  Figure 2. WRF 1-km grid landuse.

Experimental Design

WRE-Chem system was configured to run for a two-month period (Sept.-Oct. 2013), in 5-day segments with a 12-hour overlapping time-window. The WRF
model solutions are then used to drive a Lagrangian Particle Dispersion Model (LPDM) that calculates the CO, footprints of each CO, tower observations. The
footprints are used to compute the influence function in the inversion system to compute the updated posterior CO, fluxes. Four different WRF configurations
(or experiments) are conducted and results of both meteorological fields and posterior CO2 fluxes are compared among the four experiments:

NOFDDA : No data assimilation of any form is applied. WREF is purely driven by NARR

FDDA_WMO: Only standard WMO surface and upper-air observations are assimilated.

FDDA_WMO_Lidar: In additional to WMO observations, wind profiles from the local HALO lidar are also assimilated.

FDDA WMO_Lidar_ACARS: In addition to the WMO and lidar data, the ACARS observations are also assimilated .

Table 1. Mean error (ME) and mean absolute error (MAE) of the WRF-predicted
10-m wind direction, wind speed and 2-m temperature over the 1-km grid verified
hourly against three WMO surface measurements, averaged over the period
between 00 UTC 27 August and 00 UTC 3 November 2013.

Model error can be reduced by assimilating meteorological observations (Tables 1 and 2, Fig. 3 through 6). However, the assimilation of the WMO surface
stations has a limited impact in the vertical (up to 900m max.). The assimilation of the wind profiles from the HALO lidar improved the WRF simulated
wind speed and direction up to 2km high. The model performances were further increased due to the assimilation of ACARS data, filling the gaps between
the 12-hourly WMO radiosondes and providing a better spatial density than the Lidar data. The model-predicted PBL depth is also improved indirectly by
assimilating meteorological observations (Table 3 and Fig. 7).

Figure 6. Model wind direction (a) and wind speed (b)
MAE, comparing all four experiments: NOFDDA (MAE1),
FDDA_WMO (MAE2), FDDA_WMO_Lidar (MAE3) and
FDDA_WMO_Lidar_ACARS (MAE4), averaged over time for
the 5-day simulation starting 12 UTC 23 September 2013,
for the 1-km grid.

Figure 7. Comparison of PBL structures between WRF
and the INFLUX lidar observations at Indianapolis for
28 and 30 August 2013: a) WRF-predicted TKE from
Expt. NOFDDA, b) WRF-predicted TKE from Expt.
FDDA_WMO_Lidar_ACARS, c) Lidar-observed vertical
velocity variances, and d) Lidar-observed Signal-to-
Noise Ratio (SNR).

The 5-day inverse emissions were computed using a Bayesian inversion system at 1-km resolution over the urban area of Indianapolis. Figure 8 shows
the Observation network showing 12 INFLUX towers, and Figure 9 shows the results over the two-month period (Sept-Oct 2013) for the whole-city
emissions. The variability among the 3 inversion cases the impact of di in the WRF si The WRF-FDDA with Lidar
represents the optimal configuration with lower errors in both wind speed and direction, and is considered here as the reference case. Overall, the
inverse emissions over the two months vary from 80Kt for Hestia to 90-95ktC for the different inversion estimates. The differences of about 50ktC
among the inverse estimates represents about 50% of the change in the emissions compared to Hestia.

Figure 5. WRF error verified against the
observations, for WRF wind direction (a)
and wind speed (b) MAE time series
comparing two experiments NOFDDA (red)
and FDDA_WMO (blue), for the 1-km grid,
for the 5-day simulation starting at 12 UTC
23 September 2013.

The Lagrangian Particle Dispersion Model (Uliasz 1994) was coupled to the WRF model over the two-months (Sept-Oct 2013). Particles were released
continuously from the 12 tower locations in backward mode to simulate the area at the surface which directly influences the atmospheric
concentrations. The footprints for 24 September 2013 are shown in Figure 10. The variability of the surface influence functions correspond to the
differences in both wind speed (extent of the footprints along the main wind direction) and wind direction (width of the footprints). For this particular
day, the wind direction varies only slightly between the three configurations whereas the wind speed was too high without the use of the FDDA
system.
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Figure 8. Observation network showing
12 INFLUX towers.

Figure 9. Five-day CO, emissions over Indianapolis
using the three different WRF simulations. The
Hestia CO, emissions were aggregated at 1km
resolution and used as prior emissions in the
inversion system (Gurney et al., 2012), indicated
in black. The inverse emissions to the
3 configurations described above with WRF in
historical mode (NOFDDA, in orange),
assimilating the WMO stations (FDDA-WMO, in
purple), and assimilating the WMO and the HALO
Lidar data (FDDA-WMO_Lidar, in green).

Figure 10. Influence functions over Indianapolis at 1km
resolution for the 12 tower locations of the INFLUX
network using the LPDM (Uliasz et al., 1994), for 24

2013 over 17-22UTC) driven by
the meteorological variables from the three different
WRF configurations, in ppm_day/(g/m?/hour).

Conclusion

To estimate the impact of the meteorological assimilation system used in the Penn State CO, inversion system, we conducted three WRF simulations for a
two-month period, with various meteorological data assimilation strategies applied, including four numerical experiments: NOFDDA, FDDA_WMO,
FDDA_WMO_Lidar, and FDDA_WMO_Lidar_ACARS. Model error can be si reduced by assimilating WMO . However, the

of the WMO surface stations has a limited impact in the vertical (up to 900m max.). The assimilation of the wind profiles from the HALO lidar improved the
WRF simulated wind speed and direction up to 2km high. The model performances were further increased thanks to the assimilation of ACARS data, filling
the gaps between the 12-hourly WMO radiosondes and providing a better spatial density than the Lidar data. It was found that assimilating meteorological
observations can indirectly improve the model-predicted PBL depth.

The inverse emissions from the three simulations are significantly impacted by the quality of transport simulations, with a difference of 50% in the emission
correction after inversion ing on the transport simulations. The use of ical data improved the model performances and provided more
robust CO, emissions at the city scale, reducing the systematic errors in the inverse emissions. Therefore, we highly recommend the use of meteorological
assimilation systems for high resolution inversions to avoid the propagation of systematic errors from the transport model into the emi

ion estimates.
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