UNIVERSITY OF MIAMI ROSENSTIEL SCHOOL of MARINE & **ATMOSPHERIC SCIENCE**

Introduction

- The Madden-Julian Oscillation (MJO) is a complex multi-scale phenomenon and its initiation and eastward propagation over the Indian Ocean (IO) are not well understood. It is poorly represented by numerical models.
- A coupled atmosphere-ocean model (UWIN-CM) is used to simulate an MJO event that occurred in November-December of 2011, and was well-observed during the DYNAMO (Dynamics of MJO) field campaign.
- The MJO initiation and eastward propagation are studied using a cloud-permitting (4km) coupled model experiments by varying individual physical processes, so we can examine the effects of model resolution, cumulus parameterization, and air-sea coupling on the MJO.

Model Configuration and Experiments

UWIN-CM (Unified Wave Interface - a Coupled Model):

- Weather Research Forecasting (WRF-ARW) v.3.6.1 with 36 vertical levels, - initial and lateral boundary conditions: ECMWF analysis,
- cumulus parameterization: Kain-Fritsch; PBL scheme: YSU.
- Hybrid Coordinate Ocean Model (HYCOM) v.2.2.98 with 32 vertical levels, - uniform 0.08° horizontal resolution,

atmosphere, 4km) from removing the ocean component of the model, and AO4-VC by improving surface heat fluxes over the ocean.

Contact: asavarin@rsmas.miami.edu

Pathways to Better Prediction of MJO Initiation over the Indian Ocean

Ajda Savarin and Shuyi S. Chen Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL

Large-Scale Structure

- Observations used for comparison:
- precipitation: TRMM 3B42 3-hourly, at .25° resolution
- surface zonal wind (U10): ECMWF analysis 6-hourly, at .25° resolution
- sea surface temperature (SST): TMI/AMSR-E daily (local noon), at .25° resolution

र्ष्न westerlies, although it is most distinct in AO4 and AO4-VC and weakest in AO12. • Model produces less SST cooling than observed over IO, causing precipitation to linger over the IO instead of re-forming farther eastward.

Large-Scale Precipitation Tracking (LPT)

LPT identifies precipitation features that accumulate a significant amount of rainfall over at least 3 days, with hundreds to thousands of kilometers in horizontal extent.

• Air-sea fluxes in AO4 (LHF, Fig. 5, left panel) show a strong positive bias compared to observations, especially in low winds.

• Improved flux parameterization by reducing convective velocity (V^c):

 $LHF_m = C_e(q_s - q_a)(||\overrightarrow{V_{10}}|| + V^c)$

$$V_m^c = 2\sqrt{\frac{\partial \theta_v}{\partial z}} \to V^c = \begin{cases} V_m^c & \text{in } AO4\\ .5V_m^c & \text{in } AO4-VC \end{cases}$$

* m refers to WRF 3.6.1 parameterization

Uncoupled from Ocean

• SST remains constant throughout UA4.

We would like to thank Milan Curcic for his help with the UWIN-CM simulations, and Brandon W. Kerns for LPT analysis on model experiments. This research is supported by research grants from NSF (AGS1062242), NOAA (NA11OAR4310077), and NASA under the OVWST (NNX14AM78G).

Average Precipitation Bias [mm/h]	
0.035	
0.168	
0.109	
0.229	
ve): del n biases t): e	

Acknowledgements