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Outline

Notes:
e Extremes from a statistician’s POV.

e Much of current extremes work focuses on dependence.

1. Quick review of ‘classical” univariate extremes—via illus-
tration.

2. Multivariate extremes and tail dependence.
3. Snapshots of research and challenges.
(a) Evaluating RCM'’s ability to produce extreme events.

(b) Spatial extremes.
(c) Dimension reduction.



Colorado Flood of 2013

e \Widespread heavy precip Sept 9 - 15, 2013.
e 8 Killed,

NOAAs NWS, HDSC Big Thompson River Canyon

Boulder:

e Flash flood event Sept 12: 9.08 in.

e NOAA HDSC 1000-year rtn level est for 24 hr precip:
8.16 in; 90% CI: (5.46-10.9).



Univariate Extreme Value Analysis

EVA has a relatively long history of answering questions like:
e very high quantile: e.g., return level of ‘100-year flood’.
e return frequency of observed event.

Illustration: Boulder precipitation record (May-Sept)
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Analyze the data two ways:
1. Model all of the data.

2. Model only the tail. (Classical EVA)



Modeling all precipitation data

Let X; be the daily “summer’ precipitation amount for Boul-
der. (Summer = May-Sept)

| Xy >0 wop. p .
Assume: {Xt —0wp. 1—p p = 0.32.
Further, assume that [X; | X; > 0] ~ Gamma(k,0).

ML estimates: k£ = 0.653, 6 = .322.

Histogram of Non-Zero Data
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Tail Estimates (Modeling all data)

100-year rtn level estimate: 2.395 (2.29, 2.50)
NOAA: 5.52 (4.20, 6.93)

Rtn pd of 2013 event est: 161 Billion years (42B, 727B)

QQ plot of Non-Zero Data
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Note: < 1% of all data and 2.7% of non-zero data are > 1.25.



Tail Estimates (Modeling all data)

Q: Is the model to blame?
A: Only partly.

Lognormal: n = -2.49, o0 = 1.37

Histogram of Non-Zero Data QQ plot of Non-Zero Data
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100-year rtn level estimate: 10.42 (9.31, 11.60)
NOAA: 5.52 (4.20, 6.93)
Rtn period of 2013 event est: 68.8 years (52.2, 93.2)



Classical Extremes Approach

Select subset of ‘extreme’ data, fit a model from EVT.
e block maxima — GEV
e threshold exceedances — GPD

GEV analysis: (annual max — only 64 data points!)
o =1.35 6 = 0.57; £ = 0.15.

empiric

model

100 year RL est: 5.12 (4.06, 7.32); NOAA: 5.52 (4.20, 6.93)
Rtn pd of 2013 event est: 1654 years (188.3, 65K)



Summary of Classical Univariate Extremes

Mantra: “Let the tail speak for itself.”

Fit only a subset of extreme data because ...
e any single distribution is wrong.
e non-extreme data overwhelm the fit — tail poorly fit.

e large amount of data results in small uncertainties in pa-
rameter estimates, — underestimates uncertainty in tail
(model uncertainty not accounted for).

Use a distribution from extreme value theory because . ..
e asymptotically justified (probability theory).
e it doesn’'t matter what the underlying distribution is.
e justification for extrapolation into tail.

Q: How do these ideas translate to multidimensional case?



Tail Dependence

Much of current extremes work focuses on describing depen-
dence in the tail.

Settings: Multivariate, Time Series, Spatial

FortCollins

2013
o

Boulder

Q: What is probability of event in risk region?



How do we describe tail dependence?

Extremes Mantra: Let (joint) tail speak for itself.
e Use only extreme data.

e Use a model suggested by EVT.
e DON’T use correlation to describe dependence.

A Start: Asymptotic Dependence/Independence:
Rand. vec. (X,Y) with common marginals is asy. indep. if

im P(X >u|Y >u) =0.

u—zt

Important: To talk about tail dependence, we need to know

what it means to be in the tail of each component:
e have a common marginal,

e Or account for different marginals.

Asymptotic dependence/independence is a way to begin to
talk about tail dependence, but doesn’t yield whole picture.



Boulder and Fort Collins Tail Dependence

Quantile

Data strongly exhibits asymptotic dependence.

Notes:

e Asymptotic dependence implies a special (and strong) type
of dependence.

e Few models exhibit asymptotic dependence.



Modeling Framework: MV Regular Variation

A Definition: Let R = ||Z|| and W = || Z||"'Z. Z is regu-
lar varying if there exists a normalizing sequence {b,} where
P Y Z|| > 1) ~nt, such that

nP (b;lR >r, W € A) 2 r o H(A)

where d is the dimension of Z, and where H is some proba-
bility measure on the unit ‘ball’ Sy = {z € R?| ||z]| = 1}.



Modeling Framework: MV Regular Variation

(20, Z1, Z2)

£l

Idea: Distribution of large points described by:
1. radial component which decays as a power function

2. angular component (which has a probability distribution
H on the unit simplex).



Why is reqg. var. right useful for modeling tail dependence?
e theoretical justification; fundamentally tied to MVEVDs.
e defined in terms of tail, says nothing about distn's ‘bulk’.
e allows for extrapolating further into the tail.

e 2 multivariate model for asymptotic dependence.

Statistical practice:
e Transform marginals to convenient heavy-tailed dist’'n.
e Similar to copula approaches, but models differ, and we
only use extreme observations.
e \We choose one where o« = 1 and use L1 norm.
e After marginal transformation, radial behavior is known.
e Procedure (after transformation):
1. Retain large points (in terms of radial component).
2. Model the angular (or spectral) measure H.
3. Make inference on quantity of interest.



MV Reg Var Estimation of Risk Region

Angular Components of Top 100 Obs.
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1. Transform marginal (Fréchet — very heavy tailed!).
2. Set threshold, estimate H.
3. Integrate to find probability.
P(X € R) £ 0.00048 —Rtn PdZ 14.2 years.
CI. Takes some work.



MV Reg Var Estimation of Risk Region

Angular Components of Top 100 Obs.
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e Used only large observations to characterize marginal tails
and tail.

e Used a framework suggested by EVT.
e Framework captures asymptotic dependence.



Do RCM’'s get extreme precip right?

—— observations
—— model output

2013
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e Do RCM's get marginal distributions right?
— Even if marginal isn't right, could downscale.

e Do RCM'’s produce extreme behavior when they should?
— When (large scale) conditions are right for extremes, do
the RCM'’s produce extremes?
— Marginal unimportant, correspondence is important.
— Perhaps answering: Does downscaling make sense?

For second question, we describe the tail dependence between
NCEP-driven RCM output (NARCCAP) and observations.



Pacific Coast Winter Extreme Precipitation

NCEP WRFG Observations

February 7, 1996
e Data: max of daily precipitation ‘footprints’ ~(200km)?.
e Bivariate pairs (X, Y;) of output from model j and obs.
e Do not require location of footprints to coincide.
e Note different spatial resolutions.
e RCM and NCEP show evidence for extreme precip above.



Marginal Behavior

Model U, @Ej (se) gj (se) fj,QO (CI) fj,5o (CI)
CRCM 863  172.5(21.6) —0.02(0.09) 102.3(93.0,125.7) 111.3(98.6,148.0)
ECP2 1129 325.9 (43.8) —0.04 (0.10) 157.4 (140.5,203.5) 172.5(149.4,245.3)
HRM3 1032 273.9(32.3) -0.13(0.08) 124.5(115.6,145.8) 132.5(114.2,161.6)
MM5I 1026 246.7 (33.3) 0.11 (0.10) 159.0 (135.0,222.5) 184.0 (148.3,293.9)
RegCM 1093 325.2 (42.4) —0.06(0.10) 151.6 (136.4,192.4) 165.4 (144.9,228.7)
WRFG 1086 339.8 (43.2) —0.06 (0.09) 153.8 (138.4,193.1) 167.7 (147.2,228.0)
NCEP 46 10.4 (1.2) —0.07 (0.08) 88.3(81.3,105.0) 95.1 (86.1,120.1)
(Obs) 14969 3938.5 (554.6) 0.00 (0.11) 116.1 (102.4,154.8) 128.8 (109.5,192.1)

e RCM'’s have relatively consistent estimates (CRCM lower).
e Difference between RCM, NCEP, and obs.
e Mostly negative point estimates for &, obs 0.0.
e My conclusion: downscaling still needed.



Assessing Correspondence of Extreme Precip
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e RCMs exhibit quite strong tail dependence (Y ~ 0.5).
e RCMs an improvement over NCEP.
e Also: Little spatial discrepancy between RCM and obs.



Corn Belt Summer Precipitation
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Corn Belt Summer Precipitation
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Findings:

e RCMs and obs are asymptotically independent.
e “‘Models do not produce their most extreme behavior when
conditions are such that we see largest obs.”

e AlSO:
— High variabilty in RCM marginal parameter estimates.
— Large spatial discrepancies in footprints.



Overall Conclusions

e Pacific Coast winter precipitation: NCEP-driven RCMs
produce extreme precip when and where they should.

e Corn Belt summer precip: Do not produce their most ex-
treme precip on days when obs are most extreme.

e Not a huge surprise.

Method:
e Allows one to analyze correspondance of extreme events.

e Used sensible framework for tail dependence.
e Simple. x and x in existing R packages.
e Does not depend on marginal behavior.

More to the Pacific Coast study:
e BV ext framework used to link ext precip to SLP fields.

e Produced simulations of future ext precip events from
GCM-driven future RCM runs.



Spatial Extremes

Status:
e [ heoretically justified structure: max-stable processes.

e Developed models: Brown-Resnick process, others.
e Dependence described after a marginal assumption.

Important question: Is aim to describe dependence at data
level or marginal behavior or both?

Data dependence:
e Assess aggregate effect of ext event across locations.

e Ex: Boulder/Ft. Collins area high at same time.
e Requires max-stable process; simple marginal structure?

Marginal behavior:
e How does ext behavior change with location?

e EX: Return level map of Western US.
e Does not necessarily require MS process.
e Often: hierarchical model, spatial model on GEV params.



Current Challenge for Spatial Extremes:
Model Fitting

e Bivariate dist of MS processes tractable.
BR/Fréchet:

raz =ep { Lo (V2 + Api002) - do (VP4 A0 )

e Recent work with higher-dimensional joint distributions.
BR/Fréchet: can be written in terms of increments/lags.

Fitting:
e Use bivariate distributions only via composite likelihood.
+ point estimates are unbiased.
— lose information by using only pairs of points.
— accurate accounting of uncertainty takes work.
— not a true I'hood: hierarchical modeling challenging.
e Use higher dimensional representations.
— Computationally challenging. Limited # of locations.



Example: Thibaud, et. al. 2015

e Study of annual minimum temperatures in Finland.
e Forestry motivation: moth eggs cannot survive < —36° C.
e Mostly interested in marginal behavior. How are extreme
low temps changing?
e However, strong data dependence, need to account for it.
e Study/Model:
— Full I'hood of BR process for data dependence.
— Bayesian hierarchical model on GEV parameters.
— 20 locations, ~ 2 days of processing to fit.

1980 _ 2016 _ 2030

Prob ann min > —36° C



EOF/PCAs for Extremes (Work in Progress)

Goal: Dimension reduction. Find modes of extreme behavior.

e Summarize multivariate dependence in terms of bivariate
relationships.

e Get a pairwise tail dependence matrix.
e Perform an eigen-like decomposition of the matrix.
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