Extreme Values in Atmospheric Science: Progress and Current Challenges

Dan Cooley

Department of Statistics

Collaborators: G. Weller, E. Thibaud,

S. Sain, M. Bukovsky, L. Mearns

Acknowledgements: NSF-DMS-1243102

Outline

Notes:

- Extremes from a statistician's POV.
- Much of current extremes work focuses on dependence.
- 1. Quick review of "classical" univariate extremes—via illustration.
- 2. Multivariate extremes and tail dependence.
- 3. Snapshots of research and challenges.
 - (a) Evaluating RCM's ability to produce extreme events.
 - (b) Spatial extremes.
 - (c) Dimension reduction.

Colorado Flood of 2013

- Widespread heavy precip Sept 9 15, 2013.
- 8 killed, > \$1B damage

NOAAs NWS, HDSC

Big Thompson River Canyon

Boulder:

- Flash flood event Sept 12: 9.08 in.
- NOAA HDSC 1000-year rtn level est for 24 hr precip: 8.16 in; 90% CI: (5.46-10.9).

Univariate Extreme Value Analysis

EVA has a relatively long history of answering questions like:

- very high quantile: e.g., return level of '100-year flood'.
- return frequency of observed event.

Illustration: Boulder precipitation record (May-Sept)

Analyze the data two ways:

- 1. Model all of the data.
- 2. Model only the tail. (Classical EVA)

Modeling all precipitation data

Let X_t be the daily "summer" precipitation amount for Boulder. (Summer = May-Sept)

Assume:
$$\begin{cases} X_t > 0 \text{ w.p. } p \\ X_t = 0 \text{ w.p. } 1 - p. \end{cases} \quad \hat{p} = 0.32.$$

Further, assume that $[X_t \mid X_t > 0] \sim \text{Gamma}(k, \theta)$.

ML estimates: $\hat{k} = 0.653$, $\hat{\theta} = .322$.

Histogram of Non-Zero Data

Tail Estimates (Modeling all data)

100-year rtn level estimate: 2.395 (2.29, 2.50)

NOAA: 5.52 (4.20, 6.93)

Rtn pd of 2013 event est: 161 Billion years (42B, 727B)

Note: < 1% of all data and 2.7% of non-zero data are > 1.25.

Tail Estimates (Modeling all data)

Q: Is the model to blame?

A: Only partly.

Lognormal: $\hat{\mu} = -2.49$, $\hat{\sigma} = 1.37$

100-year rtn level estimate: 10.42 (9.31, 11.60)

NOAA: 5.52 (4.20, 6.93)

Rtn period of 2013 event est: 68.8 years (52.2, 93.2)

Classical Extremes Approach

Select subset of 'extreme' data, fit a model from EVT.

- block maxima → GEV
- threshold exceedances → GPD

GEV analysis: (annual max – only 64 data points!) $\hat{\mu} = 1.35$; $\hat{\sigma} = 0.57$; $\hat{\xi} = 0.15$.

100 year RL est: 5.12 (4.06, 7.32); NOAA: 5.52 (4.20, 6.93) Rtn pd of 2013 event est: 1654 years (188.3, 65K)

Summary of Classical Univariate Extremes

Mantra: "Let the tail speak for itself."

Fit only a subset of extreme data because . . .

- any single distribution is wrong.
- ullet non-extreme data overwhelm the fit \to tail poorly fit.
- large amount of data results in small uncertainties in parameter estimates, → underestimates uncertainty in tail (model uncertainty not accounted for).

Use a distribution from extreme value theory because . . .

- asymptotically justified (probability theory).
- it doesn't matter what the underlying distribution is.
- justification for extrapolation into tail.

Q: How do these ideas translate to multidimensional case?

Tail Dependence

Much of current extremes work focuses on describing dependence in the tail.

Settings: Multivariate, Time Series, Spatial

Q: What is probability of event in risk region?

How do we describe tail dependence?

Extremes Mantra: Let (joint) tail speak for itself.

- Use only extreme data.
- Use a model suggested by EVT.
- DON'T use correlation to describe dependence.

A Start: Asymptotic Dependence/Independence:

Rand. vec. (X,Y) with common marginals is asy. indep. if $\lim_{u\to x^+} P(X>u\mid Y>u)=0.$

Important: To talk about tail dependence, we need to know what it means to be in the tail of each component:

- have a common marginal,
- or account for different marginals.

Asymptotic dependence/independence is a way to begin to talk about tail dependence, but doesn't yield whole picture.

Boulder and Fort Collins Tail Dependence

Data strongly exhibits asymptotic dependence.

Notes:

- Asymptotic dependence implies a special (and strong) type of dependence.
- Few models exhibit asymptotic dependence.

Modeling Framework: MV Regular Variation

A Definition: Let $R = \|Z\|$ and $W = \|Z\|^{-1}Z$. Z is regular varying if there exists a normalizing sequence $\{b_n\}$ where $P(b_n^{-1}\|Z\| > r) \sim n^{-1}$, such that

$$nP\left(b_n^{-1}R > r, \mathbf{W} \in A\right) \stackrel{v}{\to} r^{-\alpha}H(A)$$

where d is the dimension of \mathbf{Z} , and where H is some probability measure on the unit 'ball' $S_d = \{z \in \mathbb{R}^d \mid ||z|| = 1\}$.

Modeling Framework: MV Regular Variation

Idea: Distribution of *large* points described by:

- 1. radial component which decays as a power function
- 2. angular component (which has a probability distribution H on the unit simplex).

Why is reg. var. right useful for modeling tail dependence?

- theoretical justification; fundamentally tied to MVEVDs.
- defined in terms of tail, says nothing about distn's 'bulk'.
- allows for extrapolating further into the tail.
- a multivariate model for asymptotic dependence.

Statistical practice:

- Transform marginals to convenient heavy-tailed dist'n.
- Similar to copula approaches, but models differ, and we only use extreme observations.
- We choose one where $\alpha = 1$ and use L_1 norm.
- After marginal transformation, radial behavior is known.
- Procedure (after transformation):
 - 1. Retain large points (in terms of radial component).
 - 2. Model the angular (or spectral) measure H.
 - 3. Make inference on quantity of interest.

MV Reg Var Estimation of Risk Region

- 1. Transform marginal (Fréchet very heavy tailed!).
- 2. Set threshold, estimate H.
- 3. Integrate to find probability. $P(X \in R) \stackrel{\text{est.}}{=} 0.00048 \rightarrow \text{Rtn Pd} \stackrel{\text{est.}}{=} 14.2 \text{ years.}$ CI: Takes some work.

MV Reg Var Estimation of Risk Region

Mantra:

- Used only large observations to characterize marginal tails and tail.
- Used a framework suggested by EVT.
- Framework captures asymptotic dependence.

Do RCM's get extreme precip right?

- Do RCM's get marginal distributions right?
 - Even if marginal isn't right, could downscale.
- Do RCM's produce extreme behavior when they should?
 - When (large scale) conditions are right for extremes, do the RCM's produce extremes?
 - Marginal unimportant, correspondence is important.
 - Perhaps answering: Does downscaling make sense?

For second question, we describe the *tail dependence* between NCEP-driven RCM output (NARCCAP) and observations.

Pacific Coast Winter Extreme Precipitation

- Data: max of daily precipitation 'footprints' \sim (200km)².
- ullet Bivariate pairs (X_{jt},Y_t) of output from model j and obs.
- Do not require location of footprints to coincide.
- Note different spatial resolutions.
- RCM and NCEP show evidence for extreme precip above.

Marginal Behavior

Model	u_{j}	$\widehat{\psi}_{j}$ (se)	$\widehat{\xi}_{j}$ (se)	$\widehat{x}_{j,20}$ (CI)	$\widehat{x}_{j,50}$ (CI)
CRCM	863	172.5 (21.6)	-0.02 (0.09)	102.3 (93.0, 125.7)	111.3 (98.6, 148.0)
ECP2	1129	325.9 (43.8)	-0.04(0.10)	157.4 (140.5, 203.5)	172.5 (149.4, 245.3)
HRM3	1032	273.9 (32.3)	-0.13(0.08)	124.5 (115.6, 145.8)	132.5 (114.2, 161.6)
MM5I	1026	246.7 (33.3)	0.11 (0.10)	159.0 (135.0, 222.5)	184.0 (148.3, 293.9)
RegCM	1093	325.2 (42.4)	-0.06(0.10)	151.6 (136.4, 192.4)	165.4 (144.9, 228.7)
WRFG	1086	339.8 (43.2)	-0.06(0.09)	153.8 (138.4, 193.1)	167.7 (147.2, 228.0)
NCEP	46	10.4 (1.2)	-0.07 (0.08)	88.3 (81.3, 105.0)	95.1 (86.1, 120.1)
(Obs)	14969	3938.5 (554.6)	0.00 (0.11)	116.1 (102.4, 154.8)	128.8 (109.5, 192.1)

- RCM's have relatively consistent estimates (CRCM lower).
- Difference between RCM, NCEP, and obs.
- Mostly negative point estimates for ξ , obs 0.0.
- My conclusion: downscaling still needed.

Assessing Correspondence of Extreme Precip

yellow = NCEP, RCMs are other colors, 95% CI for CRCM model (black, dashed)

- RCMs exhibit quite strong tail dependence ($\hat{\chi} \approx 0.5$).
- RCMs an improvement over NCEP.
- Also: Little spatial discrepancy between RCM and obs.

Corn Belt Summer Precipitation

Corn Belt Summer Precipitation

Findings:

- RCMs and obs are asymptotically independent.
- "Models do not produce their most extreme behavior when conditions are such that we see largest obs."
- Also:
 - High variabilty in RCM marginal parameter estimates.
 - Large spatial discrepancies in footprints.

Overall Conclusions

- Pacific Coast winter precipitation: NCEP-driven RCMs produce extreme precip when and where they should.
- Corn Belt summer precip: Do not produce their most extreme precip on days when obs are most extreme.
- Not a huge surprise.

Method:

- Allows one to analyze correspondance of extreme events.
- Used sensible framework for tail dependence.
- ullet Simple. χ and $ar{\chi}$ in existing R packages.
- Does not depend on marginal behavior.

More to the Pacific Coast study:

- BV ext framework used to link ext precip to SLP fields.
- Produced simulations of future ext precip events from GCM-driven future RCM runs.

Spatial Extremes

Status:

- Theoretically justified structure: max-stable processes.
- Developed models: Brown-Resnick process, others.
- Dependence described after a marginal assumption.

Important question: Is aim to describe dependence at data level or marginal behavior or both?

Data dependence:

- Assess aggregate effect of ext event across locations.
- Ex: Boulder/Ft. Collins area high at same time.
- Requires max-stable process; simple marginal structure?

Marginal behavior:

- How does ext behavior change with location?
- Ex: Return level map of Western US.
- Does not necessarily require MS process.
- Often: hierarchical model, spatial model on GEV params.

Current Challenge for Spatial Extremes: Model Fitting

• *Bivariate* dist of MS processes tractable. BR/Fréchet:

$$F(z_1, z_2) = \exp\left\{-\frac{1}{z_1}\Phi\left(\frac{\sqrt{\gamma(h)}}{2} + \frac{1}{\sqrt{\gamma(h)}}\log\frac{z_2}{z_1}\right) - \frac{1}{z_2}\Phi\left(\frac{\sqrt{\gamma(h)}}{2} + \frac{1}{\sqrt{\gamma(h)}}\log\frac{z_1}{z_2}\right)\right\}$$

Recent work with higher-dimensional joint distributions.
BR/Fréchet: can be written in terms of increments/lags.

Fitting:

- Use bivariate distributions only via composite likelihood.
 - + point estimates are unbiased.
 - lose information by using only pairs of points.
 - accurate accounting of uncertainty takes work.
 - not a true l'hood: hierarchical modeling challenging.
- Use higher dimensional representations.
 - Computationally challenging. Limited # of locations.

Example: Thibaud, et. al. 2015

- Study of annual minimum temperatures in Finland.
- Forestry motivation: moth eggs cannot survive $< -36^{\circ}$ C.
- Mostly interested in marginal behavior: How are extreme low temps changing?
- However, strong data dependence, need to account for it.
- Study/Model:
 - Full I'hood of BR process for data dependence.
 - Bayesian hierarchical model on GEV parameters.
 - 20 locations, \sim 2 days of processing to fit.

EOF/PCAs for Extremes (Work in Progress)

Goal: Dimension reduction. Find modes of extreme behavior.

- Summarize *multivariate* dependence in terms of *bivariate* relationships.
- Get a pairwise tail dependence matrix.
- Perform an eigen-like decomposition of the matrix.

References

- Thibaud, E., Aalto, J., Cooley, D. S., Davison, A. C., and Heikkinen, J. (2015+). Bayesian inference for the brown-resnick process, with an application to extreme low temperatures. *arXiv* preprint *arXiv*:1506.07836.
- Weller, G., Cooley, D., and Sain, S. (2012). An investigation of the pineapple express phenomenon via bivariate extreme value theory. *Environmetrics*, 23:420–439.
- Weller, G., Cooley, D., Sain, S., Bukovsky, M., and Mearns, L. (2013). Two case studies of NARCCAP precipitation extremes. *Journal of Geophysical Research–Atmospheres*, 118:10475–10489.