SHORTCASTING OF ONE HOUR MICRO SCALE CLOUD FRACTION TREND THROUGH CLOUD INFRARED RADIOMETER DATA

BESNARD T. (1), VENTRE A. (2), BLEUSE M. (2), BERGER L. (3), GILLOTAY D. (4) and EL KAABOUCHI A. (2),

(1) ATMOS sarl, Rue Lucien Chaserant, 72650 Saint Saturnin, France.
(2) ISMANS, 44 Avenue Frédéric Auguste Bartholdi, 72000 Le Mans, France.
(3) Université du Maine, Avenue Olivier Messiaen, 72000 Le Mans France.
(4) IASB/BIRA, 3 Avenue Circulaire, 1180 Brussels, Belgium.
Research of the adequate physical phenomenon

Thermal infrared Emission 9-14 µm.
Ways of measurement

✓ Pyrometers
✓ Validated by previous authors
✓ Low cost
✓ Limited FOV
✓ Possibility considering the cost to gather several sensors on a common turret

Conclusion: SELECTED
Instrument designed using this principle

CIR-13 scanning instrument

CIR-4V Time serie instrument
Ground temperature measurement

\[T_{\text{air}} = T_{\text{measured}} \pm \Delta T_{\text{probe}} \pm \Delta T_{\text{radiative}} \]

With naturally ventilated shields:
\[\Delta T_{\text{radiative}} = f (\text{wind speed, solar irradiance}) \]

With motor aspirated shields:
\[\Delta T_{\text{radiative}} \approx \text{constant} \]
Transfer function T_{air} vs T_{ground} CIR
Cloud altitude versus $T_{\text{ground}} - T_{\text{brightness}}$
Kinetics of cloud cover variations

- Decrease durations

![Histogram of transition durations](image)
Kinetics of cloud cover variations

✓ Stability durations
Kinetics of cloud cover variations

✔ Growth durations
Impact of cloud cover on photovoltaic production

Photovoltaic farm field of view → micro scale measurement of cloud cover

<table>
<thead>
<tr>
<th>Cloud cover status at t time</th>
<th>Cloud cover shortcasted at t+1 hour</th>
<th>Production trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear sky</td>
<td>Clear sky</td>
<td>Growth according to growth of solar elevation</td>
</tr>
<tr>
<td>Overcast</td>
<td>Overcast</td>
<td>Steady production. No significant impact of solar elevation growth</td>
</tr>
<tr>
<td>Clear sky</td>
<td>Overcast</td>
<td>Decrease of photovoltaic production during the coming hour</td>
</tr>
<tr>
<td>Overcast</td>
<td>Clear sky</td>
<td>Growth of photovoltaic production during the coming hour</td>
</tr>
</tbody>
</table>

N.B. Difficulty to model broken clouds conditions considering solar spot position versus clouds
Shortcast rate of success

<table>
<thead>
<tr>
<th>Station location</th>
<th>Period of data record</th>
<th>Rate of success (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uccle</td>
<td>2010-2015</td>
<td>71.7</td>
</tr>
<tr>
<td>Virton</td>
<td>2008-2015</td>
<td>74.8</td>
</tr>
<tr>
<td>Redu</td>
<td>2007-2015</td>
<td>72.9</td>
</tr>
<tr>
<td>Mol</td>
<td>2010-2015</td>
<td>72.7</td>
</tr>
<tr>
<td>Ostende</td>
<td>2009-2015</td>
<td>73.1</td>
</tr>
<tr>
<td>Mont Riggi</td>
<td>2012-2015</td>
<td>71.9</td>
</tr>
</tbody>
</table>
Perspectives

- Test present algorithm under different lattitudes and longitudes
- Add basic pyranometer and/or sunshine duration meter to CIR-4V
- Approach other mathematical methods to improve shortcast
Thank you for your attention