

SHORTCASTING OF ONE HOUR MICRO SCALE CLOUD FRACTION TREND THROUGH CLOUD INFRARED RADIOMETER DATA

BESNARD T. ⁽¹⁾, VENTRE A. ⁽²⁾, BLEUSE M. ⁽²⁾, BERGER L. ⁽³⁾, GILLOTAY D. ⁽⁴⁾ and EL KAABOUCHI A. ⁽²⁾,

- (1) ATMOS sarl, Rue Lucien Chaserant, 72650 Saint Saturnin, France.
- (2) ISMANS, 44 Avenue Frédéric Auguste Bartholdi, 72000 Le Mans, France.
- (3) Université du Maine, Avenue Olivier Messiaen, 72000 Le Mans France.
 - (4) IASB/BIRA, 3 Avenue Circulaire, 1180 Brussels, Belgium.

Research of the adequate physical phenomenon

Thermal infrared Emission 9-14 µm.

Ways of measurement

- ✓ Pyrometers
- ✓ Validated by previous authors
- ✓ Low cost
- ✓ Limited FOV
- ✓ Possibility considering the cost to gather several sensors on a common turret

Conclusion: SELECTED

Instrument designed using this principle

CIR-13 scanning instrument

CIR-4V Time serie instrument

Ground temperature measurement

$$T_{air} = Tm_{easured} \pm \Delta Tp_{robe} \pm \Delta Tra_{diative}$$

With naturally ventilated shields:

$$\Delta Tr_{adiative} = f$$
 (wind speed, solar irradiance)

With motor aspirated shields:

$$\Delta Tr_{adiative} \approx constant$$

Transfer function T_{air} vs $T_{ground \ CIR}$

Cloud altitude versus T_{ground}-T_{brightness}

Kinetics of cloud cover variations

✓ Decrease durations

Kinetics of cloud cover variations

✓ Stability durations

Kinetics of cloud cover variations

✓ Growth durations

Impact of cloud cover on photovoltaic production

Photovoltaic farm field of view → micro scale measurement of cloud cover

Cloud cover status at t time	Cloud cover shortcasted at t+1 hour	Production trend
Clear sky	Clear sky	Growth according to growth of solar elevation
Overcast	Overcast	Steady production. No significant impact of solar elevation growth
Clear sky	Overcast	Decrease of photovoltaic production during the coming hour
Overcast	Clear sky	Growth of photovoltaic production during the coming hour

Shortcast rate of success

Station location	Period of data record	Rate of success (%)
Uccle	2010-2015	71,7
Virton	2008-2015	74,8
Redu	2007-2015	72,9
Mol	2010-2015	72,7
Ostende	2009-2015	73,1
Mont Riggi	2012-2015	71,9

Perspectives

- ✓ Test present algorithm under different lattitudes and longitudes
- ✓ Add basic pyranometer and/or sunshine duration meter to CIR-4V
- ✓ Approach other mathematical methods to improve shortcast

Thank you for your attention

