Radiative Properties of Soot Superaggregates in the Infrared
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Soot Is one of the largest man-made contributors to global warming and its influence on climate has been greatly underestimated. This underestimation is due to poor understanding of the microphysical
properties of soot and its parameterization in climate models and satellite retrieval algorithms. Very recently, researchers observed a new kind of soot particle “super aggregates”, emitted from large-scale
forest fires globally. The morphology of these particles is described by a mass fractal dimension = 2.6, mobility diameter > 1 um, and aerodynamic diameter in the range of 0.5 - 20 um. Given their large
Size, It IS expected that these soot superaggregates would impact radiative forcing in the longer wavelengths (i.e. infrared (IR)) of the incoming solar spectrum. Here, we guantitatively investigate the
microphysical and optical properties of soot superaggregates using controlled laboratory-scale experiments. Soot superaggregates were produced In our laboratory using a novel diffusion flame aerosol
reactor operated In a negative gravity. Next, an Integrated Photoacoustic-Nephelometer (IPN) System using a 1047nm laser source was built to simultaneously measure absorption and scattering
coefficient of these particles in real-time. With the parameters above, Mass Absorption Cross Section (MAC), Mass Scattering Cross Section (MSC), Mass Extinction Cross Section (MEC) and Single
Scattering Albedo (SSA) could be calculated. Our results show that soot superaggregates have distinct physical and optical properties compared to conventional sub-micron soot aggregates, and could
significantly impact direct radiative forcing in the atmosphere.
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