Mario J. Molina Symposium Jan. 12th 2016

Published in *Atmos. Chem. Phys.*

DOI:10.5194/acp-15-11967-2015 1. Motivations

- Black carbon (BC) atmospheric aging: freshly emitted BC aggreg soluble materials through condensation, coagulation, and chemi
- Laboratory experiments found substantial variations of radiative properties during BC aging, depending on coating material, thickness, and structures [e.g., Zhang et al., 2008; Shiraiwa et al., 2010; Qiu et al., 2012].
- Atmospheric observations showed complex structures for BC coated by other aerosol components [Adachi and Buseck, 2013; China et al., 2015], significantly affecting BC radiative properties [*Cappa et al.*, 2012; *Lack et al.*, 2012].
- This study develops a theoretical BC aging model to quantitatively understand the evolution of BC optical properties during aging and compares it with experiments.

2. Methods

Incident photons BC aggregates Reflected photons ₩ Diffracted wave

Fig. 2. A graphical representation of the geometric-optics surface-waves approach (GOS) for the calculation of light absorption and scattering of coated BC aggregates

- Particle structures are constructed/simulated by a stochastic procedure [Liou et al., 2011]. Light absorption and scattering are computed by the GOS approach [Liou et *al.*, 2011, 2014; *He et al.*, 2014].
- The GOS approach compares reasonably well with other methods, including Lorenz-Mie, FDTD, DDA, and T-Matrix. See *Liou et al.* [2010, 2011, 2014] and *Takano et al.* [2013] for details.
- GOS advantages: apply to a wide range of particle size and structure with a high computational efficiency.

Laboratory Experiment

- BC aging after exposure to sulfuric acid vapors at different relative humidity [*Zhang* et al., 2008; Khalizov et al., 2009].
- (1) BC mass: aerosol particle mass (APM) analyzer; (2) BC size: tandem differential mobility analyzer (TDMA); (3) BC extinction (532 nm): cavity ring-down spectrometer (CRDS) (4) BC scattering (532 nm): integrating nephelometer

Variation of the Radiative Properties during Black Carbon Aging: **Theoretical and Experimental Intercomparison**

Cenlin He¹, Kuo-Nan Liou¹, Yoshi Takano¹, Renyi Zhang², Misti Levy Zamora², Ping Yang², Qinbin Li¹, and L. Ruby Leung³ 1. Department of Atmospheric and Oceanic Sciences and Joint Institute for Regional Earth System Science and Engineering, UCLA, CA 90095, USA 2. Department of Atmospheric Sciences, Texas A&M, College Station, TX 77845, USA 3. Pacific Northwest National Laboratory, Richland, WA 99352, USA

Model Simulations

gate	es coated by
ical	oxidation.

Aging Stage	Pure BC		Coating material		Standard	Sensitivity
	Mobility diameter (nm)	Mass (10 ⁻¹⁶ g)	Species	Mass (10 ⁻¹⁶ g)	calculation	calculation
]	155 245 320	5.13 13.0 20.3	_	_	BC aggregates with a fractal dimension of 2.1, BC refractive index of 1.95–0.79 <i>i</i> , and 164/416/651 primary spherules with diameters of 15 nm for three experimental cases, respectively	 (1) BC refractive index of 1.75–0.63<i>i</i>; (2) Fractal dimension of 2.5; (3) Primary spherule diameter of 20 nm; (4) Single volume-equivalent BC sphere
II	155 245 320	5.13 13.0 20.3	Sulfuric acid (H ₂ SO ₄)	3.67 11.0 17.9	Concentric core-shell coating structures with BC refractive index of 1.95–0.79 <i>i</i>	 BC refractive index of 1.75–0.63<i>i</i>; Off-center core-shell structure; Closed-cell structure; Open-cell structure; Partially encapsulated structure; Externally attached structure
111	155 245 320	5.13 13.0 20.3	Sulfuric acid and water (H ₂ SO ₄ -H ₂ O)	7.59 20.7 33.6	Concentric core-shell coating structures with BC refractive index of 1.95–0.79 <i>i</i>	 BC refractive index of 1.75–0.63<i>i</i>; Off-center core-shell structure; Closed-cell structure; Open-cell structure; Partially encapsulated structure; Externally attached structure

• The mass and size of BC and coating material at each stage are derived from laboratory measurements.

3. Results

- > The measured optical cross sections are generally captured (differences <30%) by theoretical calculations for fresh BC aggregates and coated BC (Stages II and III).
- overestimate extinction and absorption for coated BC with smaller sizes and to underestimate scattering for larger BC sizes at Stage III.
- > BC extinction and absorption cross sections at Stage I (Stages II and III) vary by 20-40% (5-20%) due to the use of upper and lower bounds of BC refractive indices (RI), while the variation of scattering reaches 50-65% (40-50%).

> Theoretical calculations still miss some observed features. For example, it tends to

composition in climate models.

cenlinhe@atmos.ucla.edu

- factor of >2, depending on BC

significant impacts on BC radiative properties and thus its climatic effects.

Thus, a reliable estimate of BC radiative effects requires the incorporation of a dynamic BC aging process accounting for realistic coating amount, structure, and