



# Quantifying Molecular Hydrogen Emissions and an Industrial Leakage Rate for the South Coast Air Basin of California





| <ul> <li>H<sub>2</sub> shares its main anthropogenic souch arbon monoxide (CO)</li> <li>The CO emissions inventory is well a</li> </ul>                        |                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| We can use experimentally established tion-based H <sub>2</sub> emissions from CO er                                                                           | ed molar ratio to calculate co                                                                                                  |
| Past work assumes that<br>combustion alone comprises<br>total anthropogenic H <sub>2</sub><br>emissions <sup>2</sup>                                           | $\begin{array}{c} 800 \\ 600 \\ 400 \\ 200 \\ 200 \\ 200 \\ 200 \\ 100 \\ 100 \\ 100 \\ 150 \\ \Delta C_{co} [ppb] \end{array}$ |
| <b>Non-combustion source en</b><br>$\frac{j_{H_2}^{emi,combust} + j_{H_2}^{emi,non-combust}}{j_{CO}^{emi}} \cong \frac{\Delta}{-1}$ $= 0.48 \pm 0.07 + \Delta$ | $\frac{\Delta C_{H_{2,combust}} + \Delta C_{H_{2},non-combust}}{\Delta C_{CO}}$                                                 |
|                                                                                                                                                                |                                                                                                                                 |

Matt Irish<sup>1</sup>, Jason Schroeder<sup>2</sup>, Andreas Beyersdorf<sup>3</sup>, & Donald Blake<sup>2</sup> <sup>1</sup>(mairish@umich.edu) Univ. of Michigan; <sup>2</sup>Univ. of California, Irvine; <sup>3</sup>NASA Langley Research Center

> H, enhancement above the background mixing ratio (left) compared with the calculated non-combustion enhancement (ascribed here to direct leakage of  $H_2$  to the atmosphere (right). Note that color scales differ between plots.

## INDUSTRIAL LEAKAGE RATE

|   | Source                                                   | D<br>(1 |
|---|----------------------------------------------------------|---------|
|   | Carson Air Products<br>Hydrogen Plant                    |         |
|   | Wilmington Air Products<br>Hydrogen Plant                |         |
|   | Hydrolytic production at H <sub>2</sub> fueling stations |         |
| - | DAILY OUTPUT:                                            |         |
|   |                                                          |         |

Total daily industrial production of  $H_2$  (left)<sup>3</sup> is focused mainly in the Torrance and Long Beach area (right). Production facilities are shown as yellow triangles and the pipeline connecting them is shown in red.<sup>4</sup> Total daily production of  $H_2$  in the SoCAB was compared with the top-down results to estimate an upper limit leakage rate of 5%, where all emissions not accounted for by incomplete combustion in engines were assumed to be emitted from  $H_2$  infrastructure.

- non-experimental estimates

# ACKNOWLEGEMENTS

Matt would like to thank the NASA Student Airborne Research Program, its administrators at the Univ. of North Dakota, and its supporters in the NASA administration. Extra special thanks go to the Rowland-Blake Lab at UC Irvine and the DC-8 flight crew/staff at Armstrong Flight Center.

opment. June 2014.

<sup>2</sup>Hammer, S., Vogel, F., Kaul, M. and Levin, I. (2009), The H2/CO ratio of emissions from combustion sources: comparison of top-down with bottom-up measurements in southwest Germany. Tellus B, 61: 547–555. doi: 10.1111/j.1600-0889.2009.00418.x <sup>3</sup>Air Products and Chemicals, Inc. Air Products and Ultramar Sign Hydrogen Agreement. Prnewswire.com. N.p., 16 Jan. 2002.

<sup>4</sup>Abele, Andris R. (TechCompass). 2014. Status of Existing Hydrogen Refueling Stations. California Energy Commission. Publication Number: CEC-600-2015-004.







# CONCLUSIONS

H<sub>2</sub> emissions from non-combustion sources in the SoCAB are likely significant, but more in-depth analysis is required to better understand the atmospheric implications of a hydrogen economy.

An upper limit leakage rate of 5% was calculated for H<sub>2</sub> infrastructure, to be compared with a range of 0.1-10% given by previous

H<sub>2</sub> industry is nascent: this will serve as a baseline for future studies Much more work needed: D/H isotope studies, direct source observations at production plants, fuel pumps, etc.

# REFERENCES

'Air Resources Board (California). Fuel Cell Electric Vehicle Deployment and Hydrogen Fuel Station Network Devel-