

assured communications[®]

7.1 Advanced Himawari Imager (AHI) Design and Operational Flexibility

Dr. Paul C. Griffith

12th Annual Symposium on New Generation Operational Environmental Satellite Systems

AMS Annual Meeting, 11-14 January 2016

This document is not subject to the controls of the International Traffic in Arms Regulations (ITAR) or the Export Administration Regulations (EAR).

harris.com

AHI – Paradigm Shift in Geostationary Weather Imaging

Better spectral, spatial, and temporal resolution improves quality and number of critical data products Improved calibration targets yields more accurate images Interleaved scene collection provides operational flexibility

- Himawari-8: Full Disk, Japan, and rapid scan interleaved
- Himawari-7 (MTSAT-2): interrupt Full Disk for rapid scan of storms
- One instrument multiple scenes of different sizes, locations, and repetitions seamlessly interleaved

AHI-8 lunar image courtesy of JMA

Data from JMA, Video courtesy of UW/SSEC, CIMSS

This document is not export controlled. Use or disclosure of this information is subject to the restrictions on the Title Page of this document.

assured communications*

Agenda

AHI Design Calibration Targets Operational Flexibility Summary

AHI-8 (photo by Harris)

AHI-8 True Color (RGB) Image 3Dec2015 12:00 JST (Data from JMA, Processing by Harris)

This document is not export controlled. Use or disclosure of this information is subject to the restrictions on the Title Page of this document.

assured communications[®]

Harris Proprietary Information

AHI-8: First Next Generation Geostationary Imager On Orbit

ABI imagers supporting three missions:

• GOES-R (ABI), Himawari (AHI), GEO-KOMPSAT-2A (AMI)

Four flight models delivered

- ABI PFM: Integrated on GOES-R spacecraft
- AHI-8: Operating on orbit (Himawari-8)
- ABI FM2: Delivered
- AHI-9: Integrated on Himawari-9 spacecraft

Three more in production at Harris

• ABI FM3, ABI FM4, AMI

Courtesy of Mitsubishi Electric Corporation

This document is not export controlled. Use or disclosure of this information is subject to the restrictions on the Title Page of this document.

assured communications*

| Harris Proprietary Information

AHI's 2-Mirror Scanner Key to Operational Flexibility

- Scans parallel to equator without rotating image
 - 100% scan coverage efficiency
- Lowest inertia and power
- 2x EW <u>and</u> NS mechanical-tooptical motion
- Inherently polarization compensating
 - At nadir, polarization introduced by reflection off NS scanner is canceled by reflection off of EW scanner
 - Blackbody located anti-nadir, so same observing geometry applies

Delivers fast slews and accurate slow scans with minimal disturbance

This document is not export controlled. Use or disclosure of this information is subject to the restrictions on the Title Page of this document.

AHI Optical Architecture: Simple Solution to Mission Needs

This document is not export controlled. Use or disclosure of this information is subject to the restrictions on the Title Page of this document.

AHI Channels Optimized for JMA's Mission

			AHI	Nominal Wavelength			
		Resolution	Band	(µm)			
FPM	FPA	(km)	#	ABI	AHI	AMI	
VNIR	A047	1	1	0.47	0.47	0.47	
	A086	1	2	0.86	0.51	0.51	
	A064	0.5	3	0.64	0.64	0.64	
	A161	1	4	1.61	0.86	0.86	
	A138	2	5	1.38	1.61	1.38	
	A225	2	6	2.25	2.26	1.61	
MWIR	A390	2	7	3.9	3.9	3.9	
	A618	2	8	6.185	6.185	6.185	
	A695	2	9	6.95	6.95	6.95	
	A734	2	10	7.34	7.34	7.34	
	A850	2	11	8.5	8.5	8.5	
LWIR	A961	2	12	9.61	9.61	9.61	
	A1035	2	13	10.35	10.35	10.35	
	A1120	2	14	11.2	11.2	11.2	
	A1230	2	15	12.3	12.3	12.3	
	A1330	2	16	13.3	13.3	13.3	

- AHI & AMI added 1-km 0.51 µm channel (green)
 - True 3-color visible images
 - Improved ocean images
- Retained 1-km 0.865 µm channel
 - Shifted to HgCdTe detector array
- Changed 1.61 µm channel to 2-km
- Eliminated one NIR channel
 - AHI: 1.378 µm
 - AMI: 2.25 µm

Color Key:	
Not in ABI	
Different FPA	

This document is not export controlled. Use or disclosure of this information is subject to the restrictions on the Title Page of this document.

Focal Plane Modules Spatially Separate Channels in Scan Direction

Acronyms:

- FPM = Focal Plane Module
 - VNIR = Visible and Near-Infrared
 - MWIR = Midwave Infrared
 - LWIR = Longwave Infrared
- FPA = Focal Plane Array
- FOV = Field of View

This document is not export controlled. Use or disclosure of this information is subject to the restrictions on the Title Page of this document.

assured communications*

Detector Selection Capability Provides Operational Redundancy and Optimization

Requirement: one operational element per downlinked row per side

This document is not export controlled. Use or disclosure of this information is subject to the restrictions on the Title Page of this document.

| Harris Proprietary Information

All detector elements characterized using on-board targets, spacelooks, and/or stable vicarious calibration targets

- Zero radiance and "typical" radiance scenes
- · Performed for all detector elements in each column

"Best" detector element in each row selected

- Operable i.e. responds to light
- Median quantum efficiency
- Low noise but not unrealistically low
- No popcorn noise
- Minimal long term drift

Updated BDS map uploaded to instrument

Detector Elements: IFOV, Rows, Columns

Channels	Resolution	IFOV (µrad)			
(wavelengths in µm)	(km)	NS	EW	Rows	Columns
0.64	0.5	10.5	12.4	1460	3
0.47, 0.51	1	22.9	22.9	676	3
0.86	1	22.9	22.9	676	6
1.61, 2.26	2	42.0	51.5	372	6
3.9, 6.18, 6.95, 7.34, 8.5, 9.61	2	47.7	51.5	332	6
10.35, 11.2, 12.3, 13.3	2	38.1	34.3	408	6

Resolution = pixel spacing of final image after resampling

• 1 km = 28 µrad

77,400 detector elements total; 7,856 downlinked

This document is not export controlled. Use or disclosure of this information is subject to the restrictions on the Title Page of this document.

Agenda

AHI Design

Calibration Targets Operational Flexibility Summary

AHI-8 (photo by Harris)

AHI-8 True Color (RGB) Image 3Dec2015 12:00 JST (Data from JMA, Processing by Harris)

This document is not export controlled. Use or disclosure of this information is subject to the restrictions on the Title Page of this document.

assured communications[®]

Harris Proprietary Information

Large number of detector elements

- Much more to be calibrated
- Increased risk of striping

Large FOV

• Much larger than traditional vicarious calibration scenes

Greater calibration accuracy expectations

Parameter	Units	Himawari-7	AHI	Ratio
Channels		5	16	3.2
Detector Elements: total		24	77,400	3225
Detector Elements: downlinked		16	7,856	491
NS FOV: max channel	µrad	274	16,311	60
EW FOV: max FPM	µrad	140	33,203	237

Harris' ABI-class imager provides calibration solutions

Internal Calibration Target (ICT) Accurately Calibrates Emissive Channels On-orbit

- 3-bounce blackbody based on patented 5-bounce Harris design
 - Trap configuration and specular black paint guarantees very high emissivity (>0.995)
 - Robust against stray light and contamination
 - -NIST-traceable
- Built, tested, and demonstrated

ABI PFM 3-bounce blackbody

Full aperture, end-to-end calibration

This document is not export controlled. Use or disclosure of this information is subject to the restrictions on the Title Page of this document.

assured communications*

Harris Proprietary Information

Solar Calibration Assembly Delivers On-Orbit Calibration Over Mission Life

- Optical Port Cover:
 - One time deployable
 - Keeps payload clean during launch and outgassing
- Solar Cal Cover (SCC):
 - Open only when calibrating
 - Closed rest of time to preserve cleanliness
- Solar Calibration Target (SCT) is Spectralon[™] diffuser
 - Calibration can occur any day of year at 6:00 a.m. (6:00 p.m. if yaw flipped)
 - Collected with 10x integration time to obtain ~100% albedo signal with sub-aperture target

Optical Port Cover (closed)

SCC (closed)

End-to-end calibration

This document is not export controlled. Use or disclosure of this information is subject to the restrictions on the Title Page of this document.

assured communications*

Harris Proprietary Information

Solar Calibration Subsystem Built, Tested, and Qualified for ABI

Design optimized for minimum calibration uncertainty

Optical Port Sunshield Assembly Stray Light Baffles

This document is not export controlled. Use or disclosure of this information is subject to the restrictions on the Title Page of this document.

assured communications[®]

Harris Proprietary Information

End-to-end test collects radiance from on-board targets (ICT & SCT) while varying integration time multiplicative factor

- 0.5x to 16.5x in 33 steps of 0.5x
- 0.0625x to 2x in 32 steps of 0.0625x (1/16th)
- 1x to 22x in 22 steps of 1x

Integration time proportional to integrated photons

More easily controlled than injected voltage levels and tests much more of analog-to-digital signal processing chain

All integration times collected with all targets and all channels

- First set typically used for $\lambda < 3 \ \mu m$ (bands 1-6) when viewing SCT
 - Nominal SCT observation performed with integration factor of 10x
- Second set typically used for $\lambda > 5 \ \mu m$ (bands 8-16) when viewing ICT
- Third set typically used for λ = 3.9 µm (band 7) when viewing ICT

ECAL can also be used when observing space or any other external scene

This document is not export controlled. Use or disclosure of this information is subject to the restrictions on the Title Page of this document.

Spacelook collected at least every 30 s

- First data collected in every operational timeline
- Automatically collected as part of every Full Disk swath
 - Either at start or end, depending upon scan direction and location of sun
 - Can be autonomously collected on side opposite the sun
- Explicitly scheduled in timeline as needed

Blackbody (ICT) observed at start of each timeline

- Hence, collected every 10 minutes
- Ensures all imagery collected during timeline can be radiometrically calibrated

Solar calibration scheduled when needed

 Primary cause of VNIR calibration drift is throughput loss due to molecular contamination and radiation

AHI Design Calibration Targets Operational Flexibility Summary

AHI-8 (photo by Harris)

AHI-8 True Color (RGB) Image 3Dec2015 12:00 JST (Data from JMA, Processing by Harris)

This document is not export controlled. Use or disclosure of this information is subject to the restrictions on the Title Page of this document.

assured communications[®]

| Harris Proprietary Information

On-Orbit Operations: Raster Scan vs. Boustrophedonic

Himawari-7 Imager Boustrophedonic ("as the ox plows")

<u>AHI</u> Default = Raster Scan Capable of boustrophedonic

Raster scan results in higher quality images

· Constant time interval across swath boundary

Only possible because of Harris' advanced scanner

• Smooth, fast slews at low power with little spacecraft disturbance

This document is not export controlled. Use or disclosure of this information is subject to the restrictions on the Title Page of this document.

Harris' ABI-Class Imagers Offer Unique Scan Flexibility

NS swath & stare support vicarious calibration for GSICS Angled swaths can compensate for spacecraft yaw

• FPM is not rotated; hence coverage decreases as tilt increases

AHI Unique Interleaved Scene Collection Delivers Full Disk and Regional Scenes

- Himawari Observation Timeline
 - Full Disk: every 10 minutes
 - Japan: every 2.5 minutes
 - Rapid Scan (RO3): every 2.5 minutes
 - Typhoons, calibration, etc.
- Himawari Housekeeping with Solar Calibration Timeline
 - Solar Calibration
 - Japan: every 2.5 minutes
 - Rapid Scan: every 2.5 minutes
- Blackbody, spacelooks, & landmarks included in all timelines for radiometric calibration and navigation

AHI-8 data from JMA, Image courtesy of UW/SSEC CIMSS

User can design and load any desired scenario, even on orbit

This document is not export controlled. Use or disclosure of this information is subject to the restrictions on the Title Page of this document.

assured communications[®]

| Harris Proprietary Information

Agenda

AHI Design Calibration Targets Operational Flexibility Summary

AHI-8 (photo by Harris)

AHI-8 True Color (RGB) Image 3Dec2015 12:00 JST (Data from JMA, Processing by Harris)

This document is not export controlled. Use or disclosure of this information is subject to the restrictions on the Title Page of this document.

assured communications[®]

| Harris Proprietary Information

- AHI-8 is the first of the next generation geostationary weather imagers in operation
- Provides improved spectral, spatial and temporal resolution
- New on-board targets improve radiometric calibration
- Paradigm shift in image collection delivers regional and rapid scan images without impacting Full Disk cadence
 - Due to scanner performance and innovative scan algorithm
- Operational flexibility provides unique vicarious calibration capability

AHI-8: The Future is Now!

Dr. Paul C. Griffith Harris Space and Intelligence Systems paul.griffith@harris.com

Appreciation to NOAA, JMA, MELCO, and UW/SSEC CIMSS

This document is not export controlled. Use or disclosure of this information is subject to the restrictions on the Title Page of this document.