

WEATHER-DRIVEN RENEWABLE ENERGY ANALYSIS:

Implications for an Optimized Electric Power System Utilizing a National High-Voltage Direct-Current Transmission Network

Paul D. Picciano

Pomona College Earth System Research Laboratory, NOAA C. T. M. Clack, J. Paine, L. Terry

NOAA

MENT OF

AMS 96th Annual Meeting, New Orleans, LA

Wind & Solar Integration Challenges

The integration of high volumes of wind and solar power to reduce emissions will require significant changes to the electric power system in coming decades

- Wind and solar are weather-driven and variable sources of energy generation
- Without storage, uncontrollable fluctuations can cause reliability challenges in meeting demand
- Need for back-up operating reserves, which increase costs and often cannot adjust power output fast enough
- Risk of over-generation

The National Energy with Weather System (NEWS) Simulator

** A cost-optimizing model for the U.S. Power Grid for 2030
** Determines optimal blend of

power generation sources and locations throughout the U.S.

** Emission reductions up to 80% without increased costs and with current technology, using the national transmission system

Research Objectives

- 1) Incorporate and evaluate impact of existing U.S. electric sector policies in the NEWS Simulator
 - No Policies
 - State Renewable Portfolio Standards (RPS)
 - Federal Production Tax Credit (PTC) and Investment Tax Credit (ITC)
- 2) Assess the National HVDC System compared current electricity markets and a regional expansion scenario
 - Current Electricity Markets
 - Regional Expansion
 - A Revised National HVDC Transmission Network

Boundary Modeling Methodology

State Boundaries & Electricity Market Regions

State Boundaries: Grid Points to States

Original 32 Regions

State Wind and Solar Sites

State Boundaries

State Existing Generation 2012

State Hourly Electric Load; Nuclear & Hydro Generation

State Average Load (MWh)

State Average Nuclear Generation

State Average Hydroelectric Generation

New State HVDC Load Centers: Locations, Distances, and HVAC Losses

Power System Modeling Scenarios

Current HVAC Networks (sub-NERC)

Regional HVAC Expansion (NERC)

Paul Picciano

Paul Picciano

Policy & Grid

Assessment

Power Grid & Policy Assessment

Electric Sector Carbon-Free Generation (%)

Carbon Dioxide Emissions (MMTCO₂)

Paul Picciano

Power Generation Siting

Current Markets

Regional Expansion

National System

* PTC & ITC Policy Scenarios

Proliferation of Wind Sites in Great Plains and Northeast U.S.

Summary

- NEWS Simulator utilizes NOAA's weather expertise to optimize a cleaner power sector, reduce emissions, and mitigate climate change
- The present research expands the NEWS modeling capabilities to assess electric sector policies and new power system scenarios
- The implementation of a national network enables significantly more renewable energy deployment; lower electricity costs and emissions compared to current and regionally expanded networks
- The PTC and ITC provide large market incentives for renewable generation as well as enhance impact of the national network; Current RPSs will be largely ineffective by 2030

Future Work

- Submit paper for journal publication
- Senior thesis assessing physical and institutional challenges, including analysis of wholesale electricity market reform and transmission expansion
- Further simulations and NEWS model expansions:
 - Combined policy scenario of existing policies (RPS, PTC & ITC, cap-and-trade)
 - SO₂, NO_x, and Hg regulations (must track these first)
 - National policies: carbon tax, RPS, etc.
 - Apply model outside of U.S.

Acknowledgements

- Thank you to...
 - My research mentor Dr. Christopher Clack
 - The NOAA Hollings Scholarship Program
 - My fellow Hollings scholars and colleagues Julia
 Paine and Leigh Terry

CEANIC AND ATMOSA

PTMENT OF CC

Questions?

Contact: paul.picciano@noaa.gov

More information on NEWS Study: http://www.esrl.noaa.gov/gsd/ renewable/news-simulator.html

Photo by Will von Dauster, 2015

Policy Modeling Methodology

