Storm Damage Assessment with Weather Forecasting to Determine a Utility's Restoration Efforts

January 13th, 2015

Authors: Shylesh Muralidharan & Chad Riland Presented by: Marcus Smith

Utilities are under pressure to tackle severe weather risk to their operations Why?

• It's a perfect storm of:

Utilities are under pressure to tackle severe weather risk to their operations

It's a perfect storm of:

Utilities are under pressure to tackle severe weather risk to their operations

It's a perfect storm of:

- Infrastructure replacements not at scheduled pace
- By 2020, investment gap in distribution = \$57 Bn and Investment gap in transmission = \$37 Bn
- "Do more with less"
 - Smaller staffs
 - More reliance on contractors
 & mutual assistance

Utilities are under pressure to tackle severe weather risk to their operations

It's a perfect storm of:

Life Is Or

Evolution of utility weather decision support

Utility Focused Online Weather Support Portal

- Generic observation and forecasts
- Alerting for specific locations
- Manual comparisons with asset locations

Severe Weather Threat index

- Weather variables impacting assets
- 1-5 severity scale over time and regions
- Confidence Levels and Meteorologist comments

Storm Impact Analytics

- Aligned to utility needs
- Identification of impact at asset-level for a utility
- Damage estimates
- Crew requirement
- Restoration time estimates

Online Weather Support Portal

Severe Weather Threat specific to asset locations

Impact Modelling and damage analytics

Evolution of utility weather decision support

Utility Focused Online Weather Support Portal

- Generic observation and forecasts
- Alerting for specific locations
- Manual comparison with asset locations

Severe Weather Threat index

- Weather variables impacting assets
- 1-5 severity scale over time and regions
- Confidence Levels and Meteorologist comments

Storm Impact Analytics

- Aligned to utility needs
- Identification of impact at asset-level for a utility
- Damage estimates
- Crew requirement
- Restoration time estimates

Online Weather Support Portal

Severe Weather Threat specific to asset locations

Impact Modelling and damage analytics

Online weather support portal

- Provides a quick view of weather for a requested location
- Observed weather parameters
- Forecasts both daily and hourly
- Full situational awareness through a geospatial platform
- Location-specific alerting
- Visually displays a path of a storm and shows where severe weather is headed to

Evolution of utility weather decision support

Utility Focused Online Weather Support Portal

- Generic observation and forecasts
- Alerting for specific locations
- Manual comparison with asset locations

Severe Weather Threat index

- Weather variables impacting assets
- 1-5 severity scale over time and regions
- Confidence Levels and Meteorologist comments

Storm Impact Analytics

- Aligned to utility needs
- Identification of impact at asset-level for a utility
- Damage estimates
- Crew requirement
- Restoration time estimates

Online Weather Support Portal

Severe Weather Threat specific to asset locations

Impact Modelling and damage analytics

Severe weather threat index

- Utility-specific forecast with a 1-5 weather risk categorization
- Customized to utility's service territory and operational risk thresholds
- Seasonal thresholds due to vegetation
- Includes confidence level of forecast and meteorological input
- Weather variables for consideration:
 - Winter
 - Wind speed is for any sustained winds, including tropical storms/hurricanes
 - Wind gusts thunderstorm winds
 - Snow
 - Ice
 - Summer:
 - Wind parameters
 - Flooding
 - Lightning

Valid Time: Sent					:5					Foroca	etor w	eotoam
valid fiffle. Sept	en	Jei 10, 2014 3	0.40 FI							Fuleca	ster. w	Solean
Parameter	R	gion	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day /	Day 8	Day 9	Day 10
Wind Speed	M	ine	1	2	1	1	1	1	1	1	1	1
	N	w_Hampshire	1	1	1	1	1	1	1	1	1	1
	Ve	mont	1	2	1	1	1	1	1	1	1	1
	C	nnecticut	1	4	1	1	1	1	1	1	1	1
	M	ssachusetts	1	3	1	1	1	1	1	1	1	1
	R	ode_Island	1	5	1	1	1	1	1	1	1	1
Wind/Gust	M	ine	1	1	1	1	1	1	3	1	1	1
	N	w_Hampshire	1	1	1	1	1	1	2	1	1	1
	Ve	mont	1	1	1	1	1	1	3	1	1	1
	C	nnecticut	1	1	1	1	1	1	4	1	1	1
	M	ssachusetts	1	1	1	1	1	1	3	1	1	1
	R	ode_Island	1	1	1	1	1	1	2	1	1	1
Snow	M	ine	1	1	1	1	1	1	1	1	1	1
	N	w_Hampshire	1	1	1	1	1	1	1	1	1	1
	Ve	mont	1	1	1	1	1	1	1	1	1	1
	C	nnecticut	1	1	1	1	1	1	1	1	1	1
	М	ssachusetts	1	1	1	1	1	1	1	1	1	1
	RI	ode_Island	1	1	1	1	1	1	1	1	1	1
ce	M	ine	1	1	1	1	1	1	1	1	1	1
	N	w_Hampshire	1	1	1	1	1	1	1	1	1	1
	Ve	mont	1	1	1	1	1	1	1	1	1	1
	Co	nnecticut	1	1	1	1	1	1	1	1	1	1
	Massachusetts		1	1	1	1	1	1	1	1	1	1
	Rh	ode_Island	1	1	1	1	1	1	1	1	1	1
Confidence Level	Maine		High	High	High	High	High	High	Medium	High	High	High
N Vi		w_Hampshire	High	High	High	High	High	High	Medium	High	High	High
		rmont	High	High	High	High	High	High	Low	High	High	High
		nnecticut	High	High	High	High	High	High	Medium	High	High	High
	Ma	ssachusetts	High	High	High	High	High	High	Medium	High	High	High
	Rh	ode Island	High	High	High	High	High	High	Medium	High	High	High

If there is a meteorologists discussion with the EEI forecast, this is where it is displayed.

Energy Event Index Definition

With Leaves (Mar 31 - Oct 31) (winter override)

	Wind Speed	Wind/Gust	Snow	Ice
EEI 1	< 30 mph	< 35 mph	< 4 in.	< 1/10 in.
EEI 2	>= 30 mph	>= 35 mph	>= 4 in.	>= 1/10 in.
EEI 3	>= 45 mph	>= 50 mph	>= 4 in.	>= 3/8 in.
EEI 4	>= 60 mph	>= 65 mph	>= 4 in.	>= 1/2 in.
EEI 5	>= 70 mph	>= 75 mph	>= 4 in.	>= 1 in.

Confidence Level					
Low	< 30% chance				
Medium	>= 30% to < 60% chance				
High	>= 60% chance				

Life Is Or

Evolution of utility weather decision support

Utility Focused Online Weather Support Portal

- Generic observation and forecasts
- Alerting for specific locations
- Manual comparison with asset locations

Severe Weather Threat index

- Weather variables impacting assets
- 1-5 severity scale over time and regions
- Confidence Levels and Meteorologist comments

Storm Impact Analytics

- Aligned to utility needs
- Identification of impact at asset-level for a utility
- Damage estimates
- Crew requirement
- Restoration time estimates

Online Weather Support Portal

Severe Weather Threat specific to asset locations

Impact Modelling and damage analytics

Predictive damage modelling

- > Advancing the severe weather threat index
- > More than weather variables vegetation, tree trimming schedules, asset location & directions, soil conditions
- > Combination of non-weather variables and utility data
 - Vegetation density
 Vegetation type
 Soil characteristics at the time of the event

Weather Variables and nature of impact

Direct variables

Summer

- Lightning electrical damage
- Wind mechanical damage
- Rain electrical damage, combination w/ lightning, sustained – mechanical damage
- Temperature mechanical damage low impact variable

Winter

Snow/Ice – mechanical damage (in addition to summer variables)

Advanced variables

- Thunderstorm intensity
- Duration of thunderstorm at various intensities
- Forecasted and actual ice accretion
- Continuous duration of rainfall at various intensities
- Direction of wind in relation to the direction of assets Confidential Property of Schneider Electric | Page 13

Impact analytics

- Pole upend algorithms
- Asset failure points
- Restoration effort correlations
- Crew availability
- Inventory stocking rules
- Equipment maintenance schedules

Thunderstorm Intensity

The thunderstorm intensity is a model derived index that takes into account the numerical forecast of the environment at a grid cell to determine the potential for high impact severe weather.

Severe Weather Attributes of Concern:

- Storm Winds
- Hail
- Tornadoes

Scale is from 1-6 with the following characteristics per index number:

- > Scale derived from a series of scores related to the model forecast development of the severe weather attributes listed above during both warm and cool seasons
- 1. No thunderstorms
- 2. Weak thunderstorms
- 3. Strong but sub severe
- 4. Strong and minimally severe
- 5. Very strong with some damage likely
- 6. Extremely severe with damage likely

How does the Thunderstorm Index compare to SPC(Storm Prediction Center)?

- Model derived Thunderstorm Index uses a "finer brush" than SPC to forecast the areas of greatest potential for the strongest storms
- The goal is to provide the Utilities with a general idea spatially and temporally of predicted severe weather activity and estimate the level of impact

Day 3 Model derived thunderstorm index versus the SPC day 3 Categorical Outlook

15

How does the Thunderstorm **Index Verify?**

- The Thunderstorm Index (TI) indicates that there is a general risk of strong to severe weather
- Some areas are excluded in parts of Kansas because the TI forecast requires the conditions below to be greater than zero
 - forecast precipitation >= 0.01"
 - forecast convection is likely if precipitation develops

Day 1 Thunderstorm Index forecast versus a tornado watch area with embedded severe thunderstorm warnings.

16

Ice Accretion Forecasting

- Ice accretion forecast model we have implemented forecasts radial ice thickness on a circular cylinder and is depended on factors such as:
 - hours of freezing rain/drizzle
 - precipitation rate
 - wind speed
 - liquid water content

Proposed design of a storm damage prediction application

What The Solution is designed to deliver

The Output

- How much asset damage is predicted and where?
- A probabilistic metric (confidence level) on the chance of predicted damage
- Ability to look at multiple scenarios for comparison
- Type of assets and nature of damage?
- What resources and materials will be needed to repair the damage?
- What requests for help and commitments for helping others should be made for mutual assistance?

Life Is 🛈

The final user-facing solution can be customized as per the Utility's needs

Questions?

Thank You

Shylesh Muralidharan shylesh.muralidharan@telventdtn.com

Chad Riland chad.riland@telventdtn.com

Life Is On Schneider

Confidential Property of Schneider Electric | Page 21