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Motivation

Goals
Estimate hail size distributions with machine learning models using
input from CAM ensembles
Determine value added by ML over hailstorm proxies

Hailstorm Proxies

Updraft Helicity

* \Vertically integrated product of vertical velocity and vorticity

* Associated with strong, rotating updrafts
Column Integrated Graupel

* Total massof graupelin a vertical column L

» Large hail massnotalways associated with large hail diameters —— ——————————ld btk - o
HAILCAST HAILCAST output example.

* Hail size estimated from growing simulated hail embryos

* Triggered when vertical velocity exceeds a threshold




Ensemble and Observation Data

System CAPS Ensemble
Dynamical Model = WRF-ARW 3.5.1(2014), 3.6.1 (2015)

Run Period May-June 2014 and 2015

Grid Spacing 4 kmin 2014, 3 kmin 2015
Microphysics Thompson, Morrison, P3, Milbrandt and Yau
PBL MYJ, MYNN, YSU

Data Assimilation 3DVAR with radar data assimilation

- “ Observation Data

otk * NOAA NSSL Multi-Radar Multi-Sensor (MRMS)
F g * 1 km radar mosaic over US
N + Maximum Expected Size of Hail (MESH)

* Used as observationsfor machine learning models



Potential Hailstorm Identification

Hourl Enhanced Watershed (12,1,50,100,50) Time: 25

* Hailstorm Proxy: Hourly Max
Column Integrated Graupel

* Enhanced watershed
(Lakshmanan et al. 2009) used
to identify storm “objects”

* Objects must have area within
specified range




Hailstorm Tracking

Estimate Storm Motion Translate Objects and Match

Use cross-correlationfilterto Calculate translated centroid distances and
find direction of motion optimally match nearest pairs



Hailstorm Matching

Forecastand observed storm tracks are
matched :
Weighted average of space, time and track fi
properties fa

* 50%: Start centroid Euclidean distance

* 30%: Start time absolute difference

* 10%: Duration absolute difference

* 10%: Mean area absolute difference
Distance and time differences are tightly
constrained
Duration and area are loosely constrained




Gamma Hail Size Distribution

Storm MESH - MESH Size Distribution
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Distribution of MESH pixels
Fit gamma PDF to MESH values
Compress distribution information into 3 values

Wide range of hail sizes within MESH object
Large hail occurs within small area



Machine Learning Procedure

Hail: Yesor No
Based on track
matching

Hailstorm
object
removed from
grid

Estimate
gamma shape,
location, scale

parameters

Draw N samples
from forecast
distribution and
apply to proxy
object grid in rank
order

Generate
neighborhood
probabilities

Machine Learning: scikit-learn

* Opensource Pythonlibrary

* Contains parallelization options

Models

* Random Forest

* Elastic Net

How to increasetraining set size?

* Train one model for full domain

* Group similarensemble membersinto
same training set

Neighborhood Ensemble Probability

* Spatial smoothingand amplification

* Appliedto ML and storm proxies



Neighborhood Probability Performance
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Neighborhood Probability Performance
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Neighborhood Probability Performance

24-Hour 84 km Neighbor Prob. of 25 mm Hail 24-Hour 84 km Neighbor Prob. of 50 mm Hail
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Case Study: May 27, 2015

24-Hour Neighborhood Probability 50 mm Hail May 27, 2015 o Observed 50 mm or |arger hall

within 84 km is shown with the
, blue contours
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S . probabilities highestin areas

\\’%{’A‘{ | Yy - with non-hail-producing storms

o - ‘ ML models match highest
probabilities with largest hail

» Updraft helicity hassmallest
false alarm area




Summary

Storm MESH MESH Size Distribution
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ML methods outperform

storms are tracked and matched distribution parameters
HAILCAST but not updraft helicity

Random Forest 24-Hour Neighborhood Probability 50 mm Hail
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ML methods are more reliable ML methods can discriminate
very large hail regions




