

NASA-ISRO Synthetic Aperture Radar (NISAR) Mission Objectives and Perspective

Key Scientific Objectives:

- Understand the response of ice sheets to climate change and the interaction of sea ice and climate
- Understand the dynamics of carbon storage and uptake in wooded, agricultural, wetland, and permafrost systems
- Determine the likelihood of earthquakes, volcanic eruptions, and landslides

Key Applications Objectives:

- Understand societal impacts of dynamics of groundwater, hydrocarbon, and sequestered CO₂ reservoirs
- Provide agricultural monitoring capability in support of food security objectives
- Apply NISAR's unique data set to explore the potentials for urgent response and hazard mitigation

Perspective:

- Science community has consistently called for ubiquitous SAR coverage and sampling to make significant headway in Earth System Science (e.g. 2007 NRC decadal survey)
- Commercial systems have not been able to satisfy community needs, and perhaps cannot due to differences between scientific and typical commercial uses

NASA - ISRO SAR Mission

NISAR Science Observation Overview

NISAR Characteristic:	Would Enable:
L-band (24 cm wavelength)	Low temporal decorrelation and foliage penetration
S-band (12 cm wavelength)	Sensitivity to light vegetation
SweepSAR technique with Imaging Swath > 240 km	Global data collection
Polarimetry (Single/Dual/ Quad)	Surface characterization and biomass estimation
12-day exact repeat	Rapid Sampling
3 – 10 meters mode- dependent SAR resolution	Small-scale observations
3 years science operations (5 years consumables)	Time-series analysis
Pointing control < 273 arcseconds	Deformation interferometry
Orbit control < 500 meters	Deformation interferometry
> 30% observation duty cycle	Complete land/ice coverage
Left/Right pointing capability	Polar coverage, north and south

NISAR Would Uniquely Capture the Earth in Motion

Societal Challenges and What a NASA-ISRO SAR Could Contribute

Challenge	SAR Benefit Through Regular Monitoring of:
Global Food Security	Soil moisture and crop growth at agricultural scaleDesertification at regional scales
Freshwater Availability	Aquifer use/extent regionallyWater-body extent changesGlaciers serving as water sources
Human Health	 Moisture and vegetation as proxy for disease and infestation vectors
Disaster Prediction & Hazard Response	 Regional building damage and change assessment after earthquakes Earthen dams and levees prone to weakening Volcanoes, floods, fires, landslides
Climate Risks and Adaptation	Ice sheet/sea-ice dynamics; response to climate changeCoastal erosion and shoreline migration
Urban Management and Planning	Urban growth through coherent change detectionBuilding deformation and urban subsidence
Human-activity Based Climate Change	Deforestation's influence on carbon fluxOil and gas reservoirs

NISAR Systematic Observations

Persistent updated measurements of Earth

AMS-relevant NISAR Applications Products

Courtesy: G. Bawden

Courtesy: C. Jones

NISAR Outlook in January 2016

- NISAR will provide a rich time-series of free and open data globally for science and applications research
 - 12-day interferometric repeat, < 6-day sampling, polarimetric data covering all land, near-shore, and ice-covered areas
 - Day/Night, cloud-free radar imagery
- NISAR data can potentially support hydrological and meteorological monitoring services
 - The project is engaging other agencies and science communities through the NASA Applied Sciences program to explore special observational needs and products (e.g. low latency)
 - Scope of high-level products from project itself is limited NASA relying on community to develop products as driven by need
- NISAR is progressing well toward PDR in June 2016, with planned launch in 2020