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Introduction

The AFIT of Today is the Air Force of Tomorrow.
o Goal: compare digital imaging based quantification of
refractive bending and turbulence along the viewing

path to estimates made with weather radar
(NEXRAD), and those derived from mesoscale

numerical weather models (NWP).
* These technigues do not require sophisticated

Instrumentation and can be applied to strong,
turbulence paths.
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Time-lapse Imaging

The AFIT of Today is the Air Force of Tomorrow . e ————




Elevation Profile

Line.ol-Sight Mapped To Surface Elevation Profile Total Distance: 12.8km
W Surface Elevation (m) [l Line of Sight Elevation (m) Elevation Difference: 11.1m
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Apparent position shift due to
refractive bending

The AFIT of Today is the Air Force of Tomorrow.

S, is the ray slope at the camera BB F o7 gzza:';r:t
d is the ray height at the camera 2 P
(drawn as 0)
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The image shift is proportional to the linearly weighted change to the curvature
along the path, with zero weight at the source.
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Estimation of refractive bending 7
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The AFIT of Today is the Air Force of Tomorrow.
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Path weighting functions for  E3
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turbulence estimation AAF(]

The AFIT of Today is the Air Force of Tomorrow.

= Point source
l—— (Gaussian patch 1/e diameter 0.24 m
-~ Gaussian patch 1/e diameter 1 m I): aperture diameter

- Gaussian patch 1/e diameter 17.5 m g . .
o anadion yatchs oifiameton 55 d:1/e Gaussian patch diameter
L: path length

Patch-averaged tilt variance:
(0,2)= [ &C2(2), (2),

where f,(z) is the patﬂ weighting function:
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Path-weighted estimates of C > EX
for two days in JuIXW2014 AT
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NEXRAD Derived C,2

“FAFIT

T A L

The AFIT of Today is the Air Force of Tomorrow.

NEXRAD LEVEL-I

KILN - CINCINNATI, OH
07/23/2014 15:12:42 GMT
LAT: 39/30/29 N

LON: 83/49/03 W

ELEV: 1056 FT

| ver:12

REFLECTIVITY

ELEV ANGLE: 0.51
SWEEP TIME: 15:12:45 GMT

Legend: dBZ
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NEXRAD Derived C,2

AT

The AFIT of Today is the Air Force of Tomorrow.

To estimate C,?, radar reflectivity values are used:

s
2 sty (1071
Cﬁ. =2.637f /l 3'|K'“__|—5.

1000

/.is the wavelength, K| is the complex index of refraction for
water, and dBZ is the reflectivity.
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NWP/ NEXRAD Derived C 2 77

ZFAFIT H
The AFIT of Today is the Air Force of Tomorrow.
Tatarskii’s method applied to Ciddor’s equation for
Q refractivity:
. § K -
': : }é 1 C =a —L 35
s M
— on d9 on ciP' . On de',
.‘ .. Ciddur!NWPN[T.ev]fmml\:WPi aT dz aP Ct ae dZ
L3y : ,zf E ] L, : outer scale of turbulence
) ! A L Ky K, :ratio of diffusion of heat to diffusion of
107 : momentum.
— Local gradients of potential temperature, # and potential
|z g AT vapor pressure, ¢', are determined from NWP and
AT & Y\ ": .& . turbulence induced non-hydrostatic pressure deviations P are
£ L {11 iif Ik § | determined from NEXRAD spectrum width, a,..
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NWP/ NEXRAD derived C 2l“or*
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The AFIT of Toda

is the Air Force of T

5 the tlme-lapse imaging path ..
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NWP/ NEXRAD derived C.*for EX
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Baselining of Radar Derived C, 2

The AFIT of Today is the Air Force of Tomorrow.
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Conclusions

—— The AFIT of Today is the Air Force of Tomorrovy. M —

 Novel methods to obtain refractive bending and turbulence
iInformation using digital photography, numerical weather prediction
tools and weather radar are introduced. The methods show great
potential in estimating turbulence strengths over strong turbulence
paths, without requiring sophisticated instrumentation.

« The immense volume coverage provided by NWP models and
NEXRADSs is an added advantage. The NWP/ NEXRAD data are
freely available; so there is a cost advantage over instrumentation
too.

« These methods will immediately benefit directed energy simulation
tools (e.g. AFIT’s High Energy Laser Tactical Decision Aid) and
applications (e.g. laser communication system design).
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Future Work

—— The AFIT of Today is the Air Force of Tomorrovy. M —

 The visible image-based refractive/turbulence effects have been
shown to be closely correlated with turbulence effects on weather
radar signals—are they also closely tied to refractive/turbulence
effects on cell phone signals and other RF transmissions?

Could standard video sequences of structures across town diagnose/predict cell

phone & RF signal fades?

 The vertical displacement values appear to be very closely tied to
the temperature gradient in the layer sampled to the target

Could be used to enhance NWP modeling with more accurate
boundary layer temperature lapse information at model initiation

Appears to quantify “super-adiabatic” conditions when low level
moisture is present with dry air advecting in.
e Baselining radar C,*> to NWP C_2 provides a first order correction—

perhaps the image-based technique could be used to baseline the
NWP C,? for further improvement .

17
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Comparison of atmospheric C_¢ and refractive index gradient variations derived from
time-lapse photography to mesoscale modeling and radar measurements
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A time-lapse imaging experiment was conducted to monitor the effects of the atmosphere over some period of time. A tripod-mounted digital camera captured images of a
distant building every minute. Correlation technigues were used to calculate the position shifts between the images. Two factors causing shifts between the images are:
atmospheric turbulence, causing the images to move randomly and quickly, plus changes in the average refractive index gradient along the path which cause the images to
move vertically, more slowly and perhaps in noticeable correlation with solar heating and other weather conditions. The temporal variations in refractive bending due to
gradient variations along the viewing path is presented here. Additionally, a technique Is introduced that uses the random component of image motion to estimate the path-
weighted refractive index structure constant, C 2. The technique uses a derived set of weighting functions that depend on the size of the imaging aperture and the patch size
In the Image whose motion Is being tracked. Since this technique Is phase-based, it can be applied to strong turbulence paths where traditional irradiance based techniques
suffer from saturation effects. This light-based quantification of the amount of refractive bending and turbulence along the viewing path is applied as a ground-truth
measurement of refractive bending and turbulence for comparison to derived guantification methods such as refractive bending estimates from temperature and moisture
gradients, and turbulence inferred from scintillometer measurements. Comparisons are made to turbulence estimates made with weather radar (NEXRAD), and those
derived from mesoscale numerical weather models (NWP).

Time-lapse Imaging:

S, is the ray slope at the camera heS .]—d ﬁzzzirg:t
d is the ray height at the camera ' 2
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The image shift is proportional to the linearly weighted change to the curvature
along the path, with zero weight at the source.

= Point source

e (Gaussian patch 1/e diameter 0 24 m
(Gaussian patch 1/e diameter 1 m
(Gaussian patch 1/e diameter 17 3 m
= (Gaussian patch 1/e diameter 35 m
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D: aperture diameter
d:1/e Gaussian patch diameter
L: path length

Patch-averaged tilt variance:

(0,)= [&C (211, (2),

]_0 where f,(z) isthe patf’n weighting function:
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NEXRAD and NWP Derived C 2
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To estimate C,?, radar reflectivity values are used:
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d /is the wavelength, K, is the complex index of refraction for
water, and dBZ is the reflectivity.
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Tatarskii’'s method applied to Ciddor’s equation for

refractivity:
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turbulence induced non-hydrostatic pressure deviations P’ are
determined from NEXRAD spectrum width, a.,..
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Conclusions:

« Novel methods to obtain refractive bending and turbulence information using digital photography, numerical
weather prediction tools and weather radar are introduced. The methods show great potential in estimating
turbulence strengths over strong turbulence paths, without requiring sophisticated instrumentation.

« Theimmense volume coverage provided by NWP models and NEXRADs is an added advantage. The NWP/
NEXRAD data are freely available; so there is a cost advantage over instrumentation too.
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