

Leveraging HPC Technologies to Accelerate GOES-R Product Processing and Distribution 01/11/2016

Significant Advancements Require HPC Technologies

- The GOES-R mission represents significant advancements in spatial, spectral and temporal resolutions combined with extensive L2+ processing capabilities
 - Raw data processed at a rate of 100Mbps and Level 0/1/2+ data processed at a rate of 16.1TB per day
 - 20 algorithms that produce 35 aerosol, cloud, land, ocean, and space weather environmental products distributed across hundreds of servers
 - Product latencies as low as 1.8 seconds for solar products and 23 seconds for imagery products
 - 10x more data, 6x more often than the current GOES system, providing users 60x more data than before
- To accommodate these advancements GOES-R product processing and dissemination utilizes multiple HPC technologies

GOES-R Mission Presents Multiple Challenges

Compute Intensive

 Serial execution of algorithms cannot satisfy tight product latencies

High Throughput

- 697,168 product files per day
- 16.1TB product data per day

High Reliability

- System availability 99.99%
- Product availability of 99.9%

Adaptability

- Complex product dependency model
- Add/update algorithms at run-time

Scalability

Scale 300% without redesign

Security

FISMA High

Why HPC Technologies Are a Good Fit

Algorithm Characteristics

Design Approach

GOES-R L2 Algorithms are Embarrassingly Parallel...

Parallelized Block Processing

- Algorithms run independent from each other (do not communicate at runtime with ordering based on product precedence)
- Each Algorithm is agnostic to geographic location and dimension

- An instance of each algorithm is a unique service that can be run on any node within the cluster
- Multiple instances of an algorithm run in parallel working on different geographic regions (blocks)

...With some exceptions

- Some algorithms need larger input area than they output (Neighborhood Window)
- Some algorithms need data from previous refresh

Distributed Shared Memory

- Services can request any area they need to process, regardless of the block size produced
- Services can request older data sets cached in memory

HPC Technologies for Reliable, High Performance Processing & Distribution

HPC Technologies	Benefits
Robust Parallel Processing Framework	Flexibility to configure workloads based on data partitioning
	Standards-based inter-process messaging
	Data replication and service resiliency
	Highly scalable management and monitoring tools
Commodity HPC Cluster	Vendor neutral OTS components grounded in open, standards-based technologies
	Extensible and scalable accommodating software evolution and growth without redesign
High Performance Tiered Data Storage	Optimized for high throughput, low latency, highly reliable transactions
	Utilizes a mix of in-memory data operations and a high performance parallel file system
Comprehensive Multi-Level Security	Compliant with latest standards (FISMA, NIST, FIPS, DOC and NOAA)
	Reduces security vulnerabilities and maintains operational integrity and reliability

GOES-R Product Processing & Distribution Architecture

Compute

HPC cluster of commodity 2P x86 servers running Linux

Supports heterogeneous environment of processors and hardware vendors

x86 processing architecture provides the most extensive application and tool support

Network

High throughput, low latency 10 gigabit Ethernet interconnect

Converged compute and storage networks reduces complexity

Robust, highly scalable messaging appliances provide greater performance than software-based brokers

Tiered Storage

I/O performance is addressed using a mix of in-memory data operations (Data Fabric) and a high performance parallel file system

Storage virtualization combined with a high performance parallel file system provides a unified enterprise storage solution for both file and block data

Built using commercially available technologies

Inter-process Data Messaging

- Original middleware was built on Parallel Virtual Machine (PVM)
 - Support was waning
 - Not reliable enough
- Considered MPI as a replacement
 - Not reliable enough
 - Could not support easily add new algorithms while actively processing data
- Developed a unique, OTS based middleware solution Data Fabric
 - Distributed shared memory for data persistence
 - High performance in-memory data cache
 - JMS for event notification/messaging
 - High volume messaging

Data Fabric Advantages

High Performance

- Product data resides in RAM for faster throughput
- Only data needed for processing individual blocks is sent to service (not entire product)

Data Driven

- Services are notified when data is available through data events over JMS Topics
- Processing starts once all data is available

High Reliability

 Data is mirrored in the Data Fabric, so a single Data Fabric server failure does not cause data loss

Flexibility

- Services can connect to the Data Fabric at any time without affecting other services, including upstream services
- Data can be retrieved at any block size independent of how it was written to Data Fabric

Scalability

- Data Fabric can scale linearly by adding additional servers to Data Fabric
- Hardware resources can be added or removed during operations without affecting performance

DownBurst™ Provides Infrastructure for Parallelism

Robust Parallel Processing Framework – DownBurst™

- Service Framework encapsulates science algorithms as a service
 - Enables multiple instances of an algorithm to run independently in parallel
 - Provides algorithms with an interface to the Data Fabric
- Service Management orchestrates services across the compute cluster
 - Provides overall resource management
 - Controls the number of instances of an algorithm
 - Manages geographic regions an instance processes

Resource Management

- Need tools to manage and monitor services and the cluster
 - Deploy algorithms/services across the compute cluster based on workload
 - Monitor algorithms/services for:
 - Software failures algorithms/services crash
 - Hardware failures Node goes down or loses network connection
 - System performance CPU, memory, network, etc.
 - Recover failed algorithms/services to ensure application and hardware failures do not result in the loss of significant amounts of product data or system time
- Explored various job scheduler tool suites
 - Included both open source and proprietary solutions
 - Grid Engine, MOAB/TORQUE, PBS and LSF
- Selected Open Grid Engine
 - Low cost
 - Simple management
 - In-house experience
 - Supports redundant management servers
 - Highly scalable
 - DRMAA compliant

Performance Monitoring - Ganglia

- Aggregates performance statistics across distributed systems
 - CPU, memory, network, load, etc.
- · Commonly used in HPC Community
- Used for monitoring GOES-R product processing and dissemination to quickly assess potential performance issues

Conclusion

- HPC Technologies are well suited for application to GOES-R Product Processing and Distribution
 - Commodity HPC clusters combined with DownBurst™ provided a cost effective solution for hosting parallel execution of GOES-R algorithms
 - System is easily scaled to accommodate evolution and growth without redesign
 - GOES-R L2+ processing is a good fit for parallel processing, enabling the system to meet rigorous product timelines
 - Inherent redundancy of HPC clusters simplified achieving reliability requirements

This approach is applicable to other remote sensing ground processing systems

For more information on this topic at AMS, visit:

- Poster #373 at GOES-R/JPSS Poster Session 1 (Today)
- Poster #764 at GOES-R/JPSS Poster Session 2 (Wednesday)

Visit Harris Corporation Booth #501