Context

Comprehensive gridded precipitation datasets are used in a wide
range of applications, such as drought monitoring and land surface
modeling. In most locations, the best spatial resolution is provided by
analyses that rely heavily on radar-based precipitation estimates.
Ordinarily, such estimates are calibrated against rain gauge data, but
such calibration rarely takes into account the known structural
characteristics of radar-estimated precipitation errors.

This range-dependent adjustment is step 2 of a 3-step process. Step 1
identifies and adjusts instances of beam blockage (see Poster #560,
this Thursday). Step 3 is standard Kriging against gauge data, using

results from Steps 1 and 2 as the first guess.
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Common range-dependent error patterns
arising from vertical variations of reflectivity
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Modeling Range-Dependent Biases in Long-Term

Radar-Based Precipitation Estimates

John W. Nielsen-Gammon and D. Brent McRoberts
Texas A&M University, College Station, Texas

Model 1: For a given radar, find
grid cells collocated with nearly
complete rain gauge data.
Assume gauge data is unbiased.

Calculate gauge-radar differences.

Fit mode N or mode Y using Sen’s
weighted slope method.

Model 1 assumption: Gauges provide
unbiased measures of precipitation but
are subject to random errors.

Model 1 advantage: Bias estimates are
based entirely on independent data.

Model 1 disadvantage: Gauge data
may be sparse and (particulary for
frozen precipitation) unreliable.

Starting Point: Assign gridded (5x5 km ) Stage IV
precipitation estimates east of Rockies to nearest radar.
Operate on long-term accumulated precipitation

estimates (1-36 months)

Definition: Bias = (obs — truth) / truth

Model 2 (novel): For a given radar,
compute departure from normal rainfall at
each grid point. Average all departures
from normal within range bands with equal
numbers of data points. Fit mode N or
mode Y to range band averages. Calibrate
using median of gauge-radar differences.

Model 2 assumptions: PRISM rainfall climatology is
accurate; long-term precipitation departures from
climatology are mostly uniform or planar.

Model 2 advantage: Data are spatially and
temporally complete and are geographically
homogeneous.

Model 2 disadvantage: Gauge data is still needed
for absolute calibration.

Last Step: merge Model 1 and Model 2 into a single optimal model of

of scatter and slope.

smallest uncertainty.

radar-based precipitation biases for each radar, as follows:

1) Estimate uncertainty associated with each model. Use
conventional uncertainty estimates for Model 1. For Model 2,
determine uncertainty using an empirical calibration as a function

2) If modes for the two Models differ, choose mode from model with

3) Merge model parameters using maximum likelihood estimators.

Complex example:
Shreveport radar,
Dec. 2012

Radar-gauge pair bias estimates
(black diamonds)

Calibrated departure from normal
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Validation and Conclusion

Cross-validation tests were applied to all

radars east of the Rockies, using four different

accumulation periods ranging from 1-36

months and four different ending times, for 16
validation cases in all. Correcting the Stage IV

precipitation estimates for range-dependent
and mean-field biases reduced the RMS

difference between rain gauge and Stage |V
precipitation estimates by 20% to 57%.

We conclude that adjusting for range-
dependent biases in this way is intrinsically

useful and provides a superior first guess field
for subsequent gauge-based bias adjustments.
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Left image: UCAR/RAP (2008). Right image: Doswell and Kracmar (1996)



