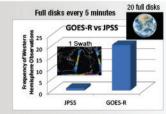

Successes and Lessons Learned During Development of NOAA's Next Generation GOES-R Ground System

HARRIS

Robert Basta, Mike Blanton, John Faure, Les Spain, Martha Meyer, Sharon Bresser, Allan Weiner I, Harris Corporation – Melbourne, FL

 Emphasis on Mission Partnership and Collaboration
Actively Resolve I/F Issues with AWG and Flight Partners
Early AWIPS and PDA Product Interface Testing Focus to Meet Mission Readiness Activities



- . GOES-R processes >10x more data and provides this data 6x more often than current system.
- . Users will receive more than 60x data than from current system

Receives critical solar flux data in 1.8 seconds from GOES-R to protect critical infrastructure

. GOES-R processes the entire Western Hemisphere 20x in the time JPSS observes 1 swath around the world

Receives continuous pipeline of KPP sectorized image tiles as instrument data is processed by the GOES-R Ground Seament

Meeting NESDIS's goal of timely delivery of environmental data to protect our nation's economy, security, and quality of life

An easily scalable and extensible Enterprise Ground System

· > 30,000 requirements results in significant verification overhead, but ensured thorough engineering and testing

. Online modeling tool that is shared by all team members is key to building an integrated UML Model

Requirements

· 3 sites, no single point of fallure, high availability Security – high impact (NIST SP 800-53, 800-82) . 6 16.4-meter X. L. S trl-band antennas 4 9.1-meter L-band receipt antennas 5 GRB simulators, 8 raw data recorders

. 5.2M LOC (835k custom, 270k script, 4M test)

259 racks, 90 miles of rack interconnection cables

. High throughput product precedent processing with

215 single precision TFLOPS (110 double precision)

147 Integrated OTS products

392 workstations, 5.8 PB of storage

- · Modeling increases design quality and reduces interface issues
- . Do not derive low-level requirements for OTS it is better to have early OTS prototyping

Development

- . WBS and org structure leaned toward 4 separate/stovepiped efforts - functional organization would have been more optimal
- . Flexibility key changed from Water Fall to Capability Based Builds to accommodate the complex interchange between flight and ground development
- . Froze PG GFP baseline at the right time to ensure
- . Do not underestimate OTS integration effort
- · Apply appropriate level of lab resource management to effectively balance prototype efforts, development, and CM control

Integration/Test

- . Factory testing from unit to CSCI to element to segment level was critical prior to site delivery
- . Site DITL testing was highly successful
- . Incremental release I&T and deployment allowed 3 site infrastructure deploy/test ahead of mission management and product capability
- · Dedicated and talented staff were essential to working tough schedules
- · Need to proactively establish plans to develop system knowledge for I&T staff

Delivery

- . Flexibility is key changed from big bang releases to incremental releases
- . Small MM release to support MOST efforts, but no small PC release to support DOST efforts
- . Need to proactively establish plans to develop system knowledge for site maintenance staff

Validation

- . Retained SMEs to support Government validation efforts
- . Utilized exercises to train ops and sustainment staff (e.g., fault insertion)
- · Utilized exercises to redline SOPS
- Seamlessly executed Ground Readiness Team (GRT) deployment process for updating builds/patches
- . Developed Factory Testbed that mimics site configuration to improve anomaly resolution and patch checkout