

An Evaluation and Constraint of Thermodynamic Boundary Conditions over the Maritime Continent

Jennifer Bukowski^{1*}, Derek Posselt¹, Jeffrey Reid², Samuel Atwood³

¹Department of Climate and Space Sciences and Engineering, University of Michigan – Ann Arbor; ²Aerosol and Radiation Section, Naval Research Laboratory – Monterey; ³Department of Atmospheric Science, Colorado State University – Fort Collins

Motivations

Biomass burning over the Maritime Continent (MC) is a strong aerosol source that can affect precipitation. This impact of aerosols on cloud development and tropical convection cannot be isolated without

Fig. 1) 6/19/2013 burning event. From Aqua MODIS.

constraining the larger-scale and more variable regional meteorology. Furthermore, difficult land-ocean topography leads to biases in reanalysis datasets, which must be addressed with comparisons to observations.

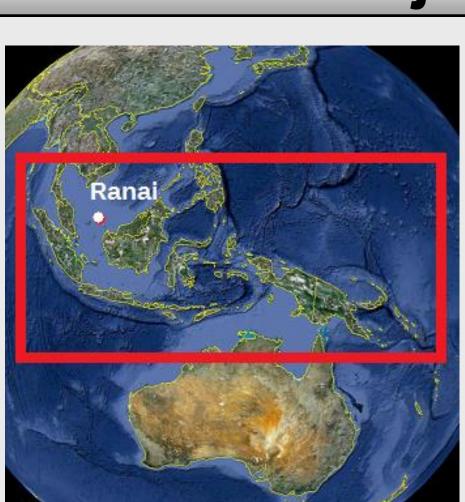


Fig. 2) Spatial Domain. From Google Earth.

Project Overview

Case Study: Ranai, Indonesia (2008-2015) **Reanalysis Datasets:** 1) ERA-Interim

 $(1.0^{\circ} \times 1.0^{\circ})$ 2) MERRA (1.25° x 1.25°)

Observations:

Radiosonde Soundings Principal Component Analysis (PCA) was employed to transform vertical patterns in temperature, humidity, and wind into typical thermodynamic profiles for the reanalysis datasets and radiosonde observations.

Principal Component Analysis

PCA is a statistical method that decomposes correlated variables into orthogonal, linearly uncorrelated principal components (PCs), or empirical orthogonal functions (EOFs). It is used as a dimensional reduction technique.

*Contact: jenbukow@umich.edu

PCA Methods

Vertical atmospheric levels covary. PCA will remove these correlations and represent the largest possible variance with the fewest components. **Methods:**

- Temperature, relative humidity, and U & V wind components interpolated to 10-mb increments and standardized

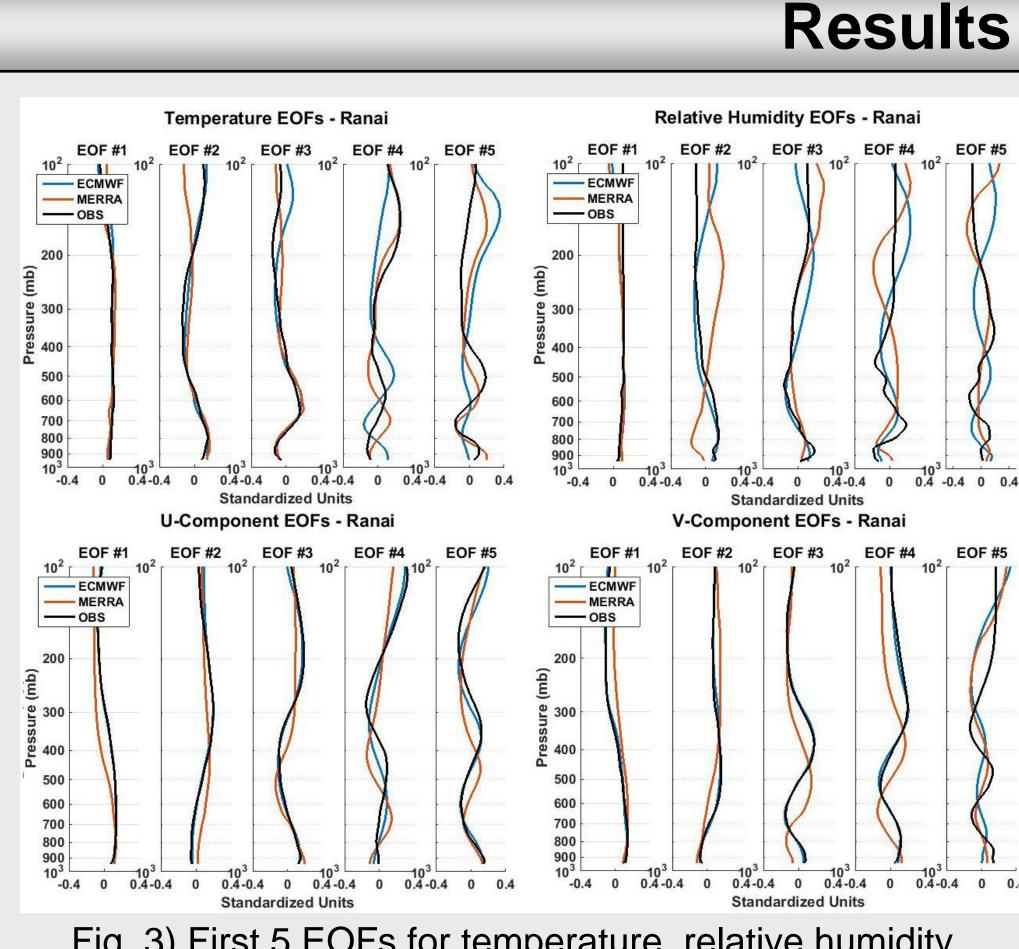


Fig. 3) First 5 EOFs for temperature, relative humidity, and U & V wind.

- Differences between the reanalyses and the radiosonde observations are obvious (Fig. 3).
- The transformed EOFs (Fig. 3) can represent a large fraction of the total variance with few components (Table 1).
- Scree plots recommend the number of EOFs to keep. Eigenvalues above 1.0 (Kaiser) or the Parallel Analysis line (Horn) are significant (Fig. 4).
- Soundings are easily reproduced as a PCweighted linear sum of EOFs.

Question: How can the natural variability in vertical temperature, and wind profiles in the tropics be constrained for numerical modeling? **Conclusion:** Vertical patterns can be represented by empirical orthogonal functions and used as boundary conditions in simulations.

Each 10-mb partition is treated as a dimension (1000-mb to 50-mb) PCA performed separately for each variable for the three datasets Scree plot analysis used to determine the number of EOFs to retain

_			_					
	Radiosonde Observations - Variance Explained							
	Eigenvector Number	Temperature	Humidity	U-Component	V-Component			
	1	40.05	44.60	44.77	33.37			
	2	16.25	13.72	19.24	17.24			
	3	10.68	12.42	9.74	12.31			
	4	5.82	6.62	5.77	9.55			
	5	5.15	4.38	4.13	4.18			
	Cumulative %	77.95	81.74	83.66	76.65			
		ERA-Interim - Variance Explained (%)						
4	1	78.35	54.61	48.57	40.24			
	2	14.96	14.48	21.50	20.84			
	3	2.15	7.97	9.54	12.47			

3	2.15	7.97	9.54	12.47
4	1.83	5.22	5.39	8.93
5	1.03	4.06	3.79	4.18
Cumulative %	98.31	86.33	88.78	86.64
	MERRA - Y	Variance Ex	(%)	
1	MERRA - \ 70.94	Variance Ex 62.86	(plained (%) 49.24	38.75
1 2				38.75 23.26

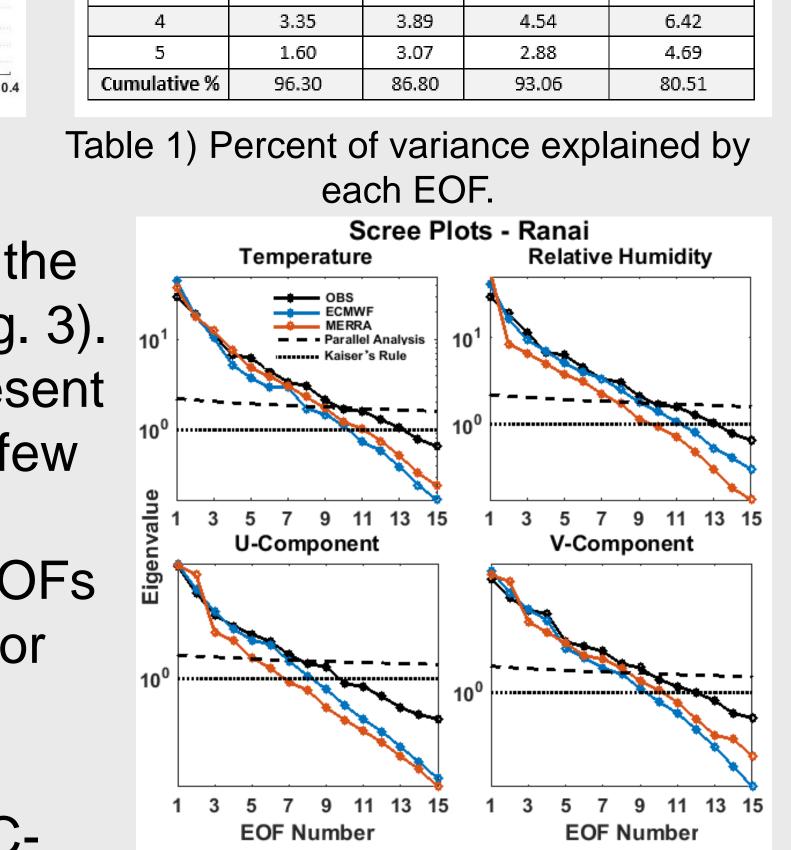
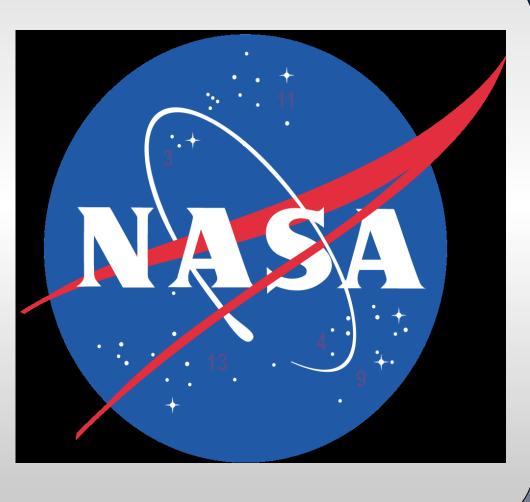



Fig. 4) Scree Plots based on Parallel Analysis (Horn, 1965) & Kaiser's Rule (Kaiser, 1960).

_	
•	Principa
	used to
	thermod
	atmosp
	Contine
•	The res
	(EOFs)
	· ·
	tempera
	dimens
•	The EO
	resolvin
	with les
	Differer
	ERA-Int
	observa
	structur
•	EOFs a
	conditio
	The ser
	precipita
	• •
	over the
N	IASA – Inter
N	Science IRL - Naval I
	Program
	at Pauley (N
	im Whitcom
	Iniversity of
	lorn, J.L, 190 actor analysi
	aiser, H.F. (
	actor analysi
	41-151.

Conclusions

al Component Analysis (PCA) was decompose the correlations between dynamic variables in vertical oheric layers over the Maritime

sulting empirical orthogonal functions represent the vertical variability in ature, moisture, and winds in a lowersional subspace.

OFs constrain the thermodynamics by ng patterns and representing variance ss information.

nces exist between the MERRA and terim data sets and radiosonde ations over the MC, as evident by the re functions.

Future Work

are currently being tested as boundary ons in a cloud resolving model. nsitivity of cloud development and ation to biomass burning aerosols e MC will be investigated.

Acknowledgements

rdisciplinary Research in Earth e Program (IDS) **Research Enterprise Internship** m (NREIP) NRL – Monterey) b (NRL - Monterey) Wyoming Sounding Database

References

65: A rationale and test for the number of factors in is, *Psychometrika*, **30,** 179–185.

(1960). The application of electronic computers to is. Educational and Psychological Measurement, 20,